# Solving Equations That Contain Fractions Using the Addition and Subtraction Properties of Equality

### Learning Outcomes

- Determine whether a fraction is a solution to an equation
- Use the equality properties of addition and subtraction to solve equations that contain fractions

## Determine Whether a Fraction is a Solution of an Equation

As we saw in previous lessons, a solution of an equation is a value that makes a true statement when substituted for the variable in the equation. In those sections, we found whole number and integer solutions to equations. Now that we have worked with fractions, we are ready to find fraction solutions to equations. The steps we take to determine whether a number is a solution to an equation are the same whether the solution is a whole number, an integer, or a fraction.### Determine whether a number is a solution to an equation.

- Substitute the number for the variable in the equation.
- Simplify the expressions on both sides of the equation.
- Determine whether the resulting equation is true. If it is true, the number is a solution. If it is not true, the number is not a solution.

### Example

Determine whether each of the following is a solution of [latex]x-\Large\frac{3}{10}=\Large\frac{1}{2}[/latex]- [latex]x=1[/latex]
- [latex]x=\Large\frac{4}{5}[/latex]
- [latex]x=-\Large\frac{4}{5}[/latex]

1. | |

[latex]x -\Large\frac{3}{10} =\Large\frac{1}{2}[/latex] | |

Substitute [latex]\color{red}{1}[/latex] for x. | [latex]\color{red}{1} -\Large\frac{3}{10} =\Large\frac{1}{2}[/latex] |

Change to fractions with a LCD of [latex]10[/latex]. | [latex]\color{red}{\Large\frac{10}{10}} -\Large\frac{3}{10} =\Large\frac{5}{10}[/latex] |

Subtract. | [latex]\Large\frac{7}{10} \not=\Large\frac{5}{10}[/latex] |

2. | |

[latex]x -\Large\frac{3}{10} =\Large\frac{1}{2}[/latex] | |

Substitute [latex]\color{red}{\Large\frac{4}{5}}[/latex] for x. | [latex]\color{red}{\Large\frac{4}{5}} -\Large\frac{3}{10} =\Large\frac{1}{2}[/latex] |

[latex]\color{red}{\Large\frac{8}{10}} -\Large\frac{3}{10} =\Large\frac{5}{10}[/latex] | |

Subtract. | [latex]\Large\frac{5}{10} =\Large\frac{5}{10}\quad\checkmark[/latex] |

3. | |

[latex]x -\Large\frac{3}{10} =\Large\frac{1}{2}[/latex] | |

Substitute [latex]\color{red}{-\Large\frac{4}{5}}[/latex] for x. | [latex]\color{red}{-\Large\frac{4}{5}} -\Large\frac{3}{10} =\Large\frac{1}{2}[/latex] |

[latex]\color{red}{-\Large\frac{8}{10}} -\Large\frac{3}{10} =\Large\frac{5}{10}[/latex] | |

Subtract. | [latex]-\Large\frac{11}{10}\not=\Large\frac{5}{10}[/latex] |

### Try It

[ohm_question]146128[/ohm_question]## Solve Equations with Fractions using the Addition and Subtraction Properties of Equality

We also solved equations using the Addition, Subtraction, and Division Properties of Equality. We will use these same properties to solve equations with fractions.### Addition, Subtraction, and Division Properties of Equality

For any numbers [latex]a,b,\text{ and }c[/latex],[latex]\text{if }a=b,\text{ then }a+c=b+c[/latex]. | Addition Property of Equality |

[latex]\text{if }a=b,\text{ then }a-c=b-c[/latex]. | Subtraction Property of Equality |

[latex]\text{if }a=b,\text{ then }\Large\frac{a}{c}=\Large\frac{b}{c}\normalsize ,c\ne 0[/latex]. | Division Property of Equality |

### Example

Solve: [latex]y+\Large\frac{9}{16}=\Large\frac{5}{16}[/latex]Answer: Solution:

[latex]y +\Large\frac{9}{16} =\Large\frac{5}{16}[/latex] | ||

Subtract [latex]\Large\frac{9}{16}[/latex] from each side to undo the addition. | [latex]y +\Large\frac{9}{16}\color{red}{-}\color{red}{\Large\frac{9}{16}} =\Large\frac{5}{16}\color{red}{-}\color{red}{\Large\frac{9}{16}}[/latex] | |

Simplify on each side of the equation. | [latex]y + 0 = -\Large\frac{4}{16}[/latex] | |

Simplify the fraction. | [latex]y = -\Large\frac{1}{4}[/latex] | |

Check: | [latex]y +\Large\frac{9}{16} =\Large\frac{5}{16}[/latex] | |

Substitute [latex]y=-\Large\frac{1}{4}[/latex] . | [latex]\color{red}{-\Large\frac{1}{4}} +\Large\frac{9}{16} \stackrel{?}{=}\Large\frac{5}{16}[/latex] | |

Rewrite as fractions with the LCD. | [latex]\color{red}{-\Large\frac{4}{16}} +\Large\frac{9}{16}\stackrel{?}{=}\Large\frac{5}{16}[/latex] | |

Add. | [latex]\Large\frac{5}{16} =\Large\frac{5}{16}\quad\checkmark[/latex] |

### Example

Solve: [latex]p+\Large\frac{1}{2}=\Large\frac{2}{3}[/latex]Answer: Solution:

[latex]p+\Large\frac{1}{2}=\Large\frac{2}{3}[/latex] | ||

Subtract [latex]\Large\frac{1}{2}[/latex] from each side to undo the addition. | [latex]p+\Large\frac{1}{2}\color{red}{-}\color{red}{\Large\frac{1}{2}} =\Large\frac{2}{3}\color{red}{-}\color{red}{\Large\frac{1}{2}}[/latex] | |

Simplify on each side of the equation. | [latex]p + 0 =\Large\frac{2}{3}-\Large\frac{1}{2}[/latex] | |

Simplify the fraction by finding a common denominator. | [latex]p =\Large\frac{2}{3}\cdot\color{red}{\Large\frac{2}{2}}-\Large\frac{1}{2}\cdot\color{red}{\Large\frac{3}{3}}[/latex] | |

[latex]p =\Large\frac{4}{6}-\Large\frac{3}{6}[/latex] | ||

[latex]p =\Large\frac{1}{6}[/latex] | ||

Check: | [latex]p+\Large\frac{1}{2}=\Large\frac{2}{3}[/latex] | |

Substitute [latex]p=\Large\frac{1}{6}[/latex] . Rewrite as fractions with the LCD. | [latex]\color{red}{\Large\frac{1}{6}} +\Large\frac{1}{2} \stackrel{?}{=}\Large\frac{2}{3}=\color{red}{\Large\frac{1}{6}}+\Large\frac{3}{6}\stackrel{?}{=}\Large\frac{4}{6}[/latex] | |

[latex]\Large\frac{4}{6} =\Large\frac{4}{6}\quad\checkmark[/latex] |

### Try It

[ohm_question]146492[/ohm_question]### Example

Solve: [latex]a-\Large\frac{1}{4}=-\Large\frac{2}{3}[/latex]Answer: Solution:

[latex]a-\Large\frac{1}{4}=-\Large\frac{2}{3}[/latex] | ||

Add [latex]\Large\frac{5}{9}[/latex] from each side to undo the addition. | [latex]a-\Large\frac{1}{4}\color{red}{+}\color{red}{\Large\frac{1}{4}} =-\Large\frac{2}{3}\color{red}{+}\color{red}{\Large\frac{1}{4}}[/latex] | |

Find a common denominator. | [latex]a =-\Large\frac{2}{3}\cdot\color{red}{\Large\frac{4}{4}}+\Large\frac{1}{4}\color{red}{\Large\frac{3}{3}}[/latex] | |

Simplify on each side of the equation. | [latex]a = -\Large\frac{8}{12}+\Large\frac{3}{12}[/latex] | |

Simplify the fraction. | [latex]a = -\Large\frac{5}{12}[/latex] | |

Check: | [latex]a-\Large\frac{1}{4}=-\Large\frac{2}{3}[/latex] | |

Substitute [latex]a=-\frac{5}{12}[/latex] . | [latex]\color{red}{-\Large\frac{5}{12}} -\Large\frac{1}{4}\stackrel{?}{=}-\Large\frac{2}{3}[/latex] | |

Change to common denominator. | [latex]\color{red}{-\Large\frac{5}{12}} -\Large\frac{3}{12}\stackrel{?}{=}-\Large\frac{8}{12}[/latex] | |

Subtract. | [latex]-\Large\frac{8}{12} = -\Large\frac{8}{12}\quad\checkmark[/latex] |

### Try It

[ohm_question]146494[/ohm_question]## Licenses & Attributions

### CC licensed content, Shared previously

- Solving One Step Equations Using Addition and Subtraction (Fractions).
**Authored by:**James Sousa (Mathispower4u.com).**License:**CC BY: Attribution. - Question ID: 146128, 146492, 146494.
**Authored by:**Alyson Day.**License:**CC BY: Attribution.**License terms:**IMathAS Community License CC-BY +GPL.

### CC licensed content, Specific attribution

- Prealgebra.
**Provided by:**OpenStax**License:**CC BY: Attribution.**License terms:**Download for free at http://cnx.org/contents/[email protected].