Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos((5pi)/3)cos(pi/6)-sin((5pi)/3)sin(pi/6)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos(35π​)cos(6π​)−sin(35π​)sin(6π​)

Lösung

23​​
+1
Dezimale
0.86602…
Schritte zur Lösung
cos(35π​)cos(6π​)−sin(35π​)sin(6π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(611π​)
cos(35π​)cos(6π​)−sin(35π​)sin(6π​)
Benutze die Identität der Winkelsumme: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)=cos(35π​+6π​)
Vereinfache:35π​+6π​=611π​
35π​+6π​
kleinstes gemeinsames Vielfache von3,6:6
3,6
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 3:3
3
3 ist eine Primzahl, deshalb ist keine Faktorisierung möglich =3
Primfaktorzerlegung von 6:2⋅3
6
6ist durch 26=3⋅2teilbar=2⋅3
2,3 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅3
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 3 oder 6vorkommt=3⋅2
Multipliziere die Zahlen: 3⋅2=6=6
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 6
Für 35π​:multipliziere den Nenner und Zähler mit 235π​=3⋅25π2​=610π​
=610π​+6π​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=610π+π​
Addiere gleiche Elemente: 10π+π=11π=611π​
=cos(611π​)
=cos(611π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(π)cos(65π​)−sin(π)sin(65π​)
cos(611π​)
Schreibe cos(611π​)als cos(π+65π​)=cos(π+65π​)
Benutze die Identität der Winkelsumme: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(65π​)−sin(π)sin(65π​)
=cos(π)cos(65π​)−sin(π)sin(65π​)
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(π)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Verwende die folgende triviale Identität:cos(65π​)=−23​​
cos(65π​)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−23​​
Verwende die folgende triviale Identität:sin(π)=0
sin(π)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
Verwende die folgende triviale Identität:sin(65π​)=21​
sin(65π​)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=21​
=(−1)(−23​​)−0⋅21​
Vereinfache=23​​

Beliebte Beispiele

arctan(sqrt(3/3))arctan(33​​)-(3sin(2))/(2sqrt(3cos(2)+10))−23cos(2)+10​3sin(2)​tan(106)tan(106∘)cos(2*45)cos(2⋅45∘)4sin^2(45)+8cos^2(30)4sin2(45∘)+8cos2(30∘)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024