Lời Giải
Máy Tính Tích PhânMáy Tính Đạo HàmMáy Tính Đại SốMáy Tính Ma TrậnHơn...
Vẽ đồ thị
Biểu đồ đườngĐồ thị hàm mũĐồ thị bậc haiĐồ thị sinHơn...
Máy tính
Máy tính BMIMáy tính lãi képMáy tính tỷ lệ phần trămMáy tính gia tốcHơn...
Hình học
Máy tính Định Lý PytagoMáy Tính Diện Tích Hình TrònMáy tính tam giác cânMáy tính tam giácHơn...
AI Chat
Công cụ
Sổ ghi chépNhómBảng Ghi ChúBảng tínhThực HànhXác thực
vi
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Phổ biến Lượng giác >

sqrt(1-cos(x))= 1/(2sin^2(x))

  • Tiền Đại Số
  • Đại số
  • Tiền Giải Tích
  • Giải tích
  • Các hàm số
  • Đại số tuyến tính
  • Lượng giác
  • Thống kê
  • Hóa học
  • Quy đổi

Lời Giải

1−cos(x)​=2sin2(x)1​

Lời Giải

x=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn
+1
Độ
x=58.37265…∘+360∘n,x=301.62734…∘+360∘n,x=142.32379…∘+360∘n,x=−142.32379…∘+360∘n
Các bước giải pháp
1−cos(x)​=2sin2(x)1​
Trừ 2sin2(x)1​ cho cả hai bên1−cos(x)​−2sin2(x)1​=0
Rút gọn 1−cos(x)​−2sin2(x)1​:2sin2(x)2sin2(x)1−cos(x)​−1​
1−cos(x)​−2sin2(x)1​
Chuyển phần tử thành phân số: −cos(x)+1​=2sin2(x)1−cos(x)​⋅2sin2(x)​=2sin2(x)1−cos(x)​⋅2sin2(x)​−2sin2(x)1​
Vì các mẫu số bằng nhau, cộng các phân số: ca​±cb​=ca±b​=2sin2(x)1−cos(x)​⋅2sin2(x)−1​
2sin2(x)2sin2(x)1−cos(x)​−1​=0
g(x)f(x)​=0⇒f(x)=02sin2(x)1−cos(x)​−1=0
Viết lại bằng cách sử dụng hằng đẳng thức lượng giác
−1+2sin2(x)1−cos(x)​
Sử dụng hằng đẳng thức Pitago: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+2(1−cos2(x))1−cos(x)​
−1+(1−cos2(x))⋅21−cos(x)​=0
Giải quyết bằng cách thay thế
−1+(1−cos2(x))⋅21−cos(x)​=0
Cho: cos(x)=u−1+(1−u2)⋅21−u​=0
−1+(1−u2)⋅21−u​=0:u≈0.52439…,u≈−0.79147…
−1+(1−u2)⋅21−u​=0
Mở rộng −1+(1−u2)⋅21−u​:−1+21−u​−21−u​u2
−1+(1−u2)⋅21−u​
=−1+21−u​(1−u2)
Mở rộng 21−u​(1−u2):21−u​−21−u​u2
21−u​(1−u2)
Áp dụng luật phân phối: a(b−c)=ab−aca=21−u​,b=1,c=u2=21−u​⋅1−21−u​u2
=2⋅1⋅1−u​−21−u​u2
Nhân các số: 2⋅1=2=21−u​−21−u​u2
=−1+21−u​−21−u​u2
−1+21−u​−21−u​u2=0
Di chuyển 1sang vế phải
−1+21−u​−21−u​u2=0
Thêm 1 vào cả hai bên−1+21−u​−21−u​u2+1=0+1
Rút gọn21−u​−21−u​u2=1
21−u​−21−u​u2=1
Hệ số 21−u​−21−u​u2:21−u​(1−u2)
21−u​−21−u​u2
Viết lại thành=1⋅21−u​−21−u​u2
Đưa số hạng chung ra ngoài ngoặc 21−u​=21−u​(1−u2)
21−u​(1−u2)=1
Bình phương cả hai vế:4−4u−8u2+8u3+4u4−4u5=1
21−u​(1−u2)=1
(21−u​(1−u2))2=12
Mở rộng (21−u​(1−u2))2:4−4u−8u2+8u3+4u4−4u5
(21−u​(1−u2))2
Áp dụng quy tắc số mũ: (a⋅b)n=anbn=22(1−u​)2(−u2+1)2
(1−u​)2:1−u
Áp dụng quy tắc căn thức: a​=a21​=((1−u)21​)2
Áp dụng quy tắc số mũ: (ab)c=abc=(1−u)21​⋅2
21​⋅2=1
21​⋅2
Nhân phân số: a⋅cb​=ca⋅b​=21⋅2​
Triệt tiêu thừa số chung: 2=1
=1−u
=22(1−u)(1−u2)2
(1−u2)2=1−2u2+u4
(1−u2)2
Áp dụng công thức bình phương hoàn hảo: (a−b)2=a2−2ab+b2a=1,b=u2
=12−2⋅1⋅u2+(u2)2
Rút gọn 12−2⋅1⋅u2+(u2)2:1−2u2+u4
12−2⋅1⋅u2+(u2)2
Áp dụng quy tắc 1a=112=1=1−2⋅1⋅u2+(u2)2
2⋅1⋅u2=2u2
2⋅1⋅u2
Nhân các số: 2⋅1=2=2u2
(u2)2=u4
(u2)2
Áp dụng quy tắc số mũ: (ab)c=abc=u2⋅2
Nhân các số: 2⋅2=4=u4
=1−2u2+u4
=1−2u2+u4
=22(1−u)(u4−2u2+1)
22=4=4(1−u)(u4−2u2+1)
Phân phối dấu ngoặc đơn=4(1−u)⋅1+4(1−u)(−2u2)+4(1−u)u4
Áp dụng quy tắc trừ-cộng+(−a)=−a=4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Rút gọn 4⋅1⋅1−u−4⋅21−uu2+41−uu4:41−u−81−uu2+41−uu4
4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Nhân các số: 4⋅1=4=4(1−u)−4⋅2(1−u)u2+4(1−u)u4
Nhân các số: 4⋅2=8=4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8(1−u)u2+4(1−u)u4
Mở rộng 4(1−u)−8(1−u)u2+4(1−u)u4:4−4u−8u2+8u3+4u4−4u5
4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8u2(1−u)+4u4(1−u)
Mở rộng 4(1−u):4−4u
4(1−u)
Áp dụng luật phân phối: a(b−c)=ab−aca=4,b=1,c=u=4⋅1−4u
Nhân các số: 4⋅1=4=4−4u
=4−4u−8(1−u)u2+4(1−u)u4
Mở rộng −8u2(1−u):−8u2+8u3
−8u2(1−u)
Áp dụng luật phân phối: a(b−c)=ab−aca=−8u2,b=1,c=u=−8u2⋅1−(−8u2)u
Áp dụng quy tắc trừ-cộng−(−a)=a=−8⋅1⋅u2+8u2u
Rút gọn −8⋅1⋅u2+8u2u:−8u2+8u3
−8⋅1⋅u2+8u2u
8⋅1⋅u2=8u2
8⋅1⋅u2
Nhân các số: 8⋅1=8=8u2
8u2u=8u3
8u2u
Áp dụng quy tắc số mũ: ab⋅ac=ab+cu2u=u2+1=8u2+1
Thêm các số: 2+1=3=8u3
=−8u2+8u3
=−8u2+8u3
=4−4u−8u2+8u3+4(1−u)u4
Mở rộng 4u4(1−u):4u4−4u5
4u4(1−u)
Áp dụng luật phân phối: a(b−c)=ab−aca=4u4,b=1,c=u=4u4⋅1−4u4u
=4⋅1⋅u4−4u4u
Rút gọn 4⋅1⋅u4−4u4u:4u4−4u5
4⋅1⋅u4−4u4u
4⋅1⋅u4=4u4
4⋅1⋅u4
Nhân các số: 4⋅1=4=4u4
4u4u=4u5
4u4u
Áp dụng quy tắc số mũ: ab⋅ac=ab+cu4u=u4+1=4u4+1
Thêm các số: 4+1=5=4u5
=4u4−4u5
=4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
Mở rộng 12:1
12
Áp dụng quy tắc 1a=1=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1
Giải 4−4u−8u2+8u3+4u4−4u5=1:u≈−1.15774…,u≈0.52439…,u≈−0.79147…
4−4u−8u2+8u3+4u4−4u5=1
Di chuyển 1sang bên trái
4−4u−8u2+8u3+4u4−4u5=1
Trừ 1 cho cả hai bên4−4u−8u2+8u3+4u4−4u5−1=1−1
Rút gọn−4u5+4u4+8u3−8u2−4u+3=0
−4u5+4u4+8u3−8u2−4u+3=0
Tìm một lời giải cho −4u5+4u4+8u3−8u2−4u+3=0 bằng Newton-Raphson:u≈−1.15774…
−4u5+4u4+8u3−8u2−4u+3=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=−4u5+4u4+8u3−8u2−4u+3
Tìm f′(u):−20u4+16u3+24u2−16u−4
dud​(−4u5+4u4+8u3−8u2−4u+3)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=−dud​(4u5)+dud​(4u4)+dud​(8u3)−dud​(8u2)−dud​(4u)+dud​(3)
dud​(4u5)=20u4
dud​(4u5)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=4dud​(u5)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=4⋅5u5−1
Rút gọn=20u4
dud​(4u4)=16u3
dud​(4u4)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=4dud​(u4)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Rút gọn=16u3
dud​(8u3)=24u2
dud​(8u3)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=8dud​(u3)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=8⋅3u3−1
Rút gọn=24u2
dud​(8u2)=16u
dud​(8u2)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=8dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=8⋅2u2−1
Rút gọn=16u
dud​(4u)=4
dud​(4u)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=4dudu​
Áp dụng đạo hàm chung: dudu​=1=4⋅1
Rút gọn=4
dud​(3)=0
dud​(3)
Đạo hàm của một hằng số: dxd​(a)=0=0
=−20u4+16u3+24u2−16u−4+0
Rút gọn=−20u4+16u3+24u2−16u−4
Cho u0​=2Tính un+1​ cho đến Δun+1​<0.000001
u1​=1.71969…:Δu1​=0.28030…
f(u0​)=−4⋅25+4⋅24+8⋅23−8⋅22−4⋅2+3=−37f′(u0​)=−20⋅24+16⋅23+24⋅22−16⋅2−4=−132u1​=1.71969…
Δu1​=∣1.71969…−2∣=0.28030…Δu1​=0.28030…
u2​=1.49728…:Δu2​=0.22241…
f(u1​)=−4⋅1.71969…5+4⋅1.71969…4+8⋅1.71969…3−8⋅1.71969…2−4⋅1.71969…+3=−12.02935…f′(u1​)=−20⋅1.71969…4+16⋅1.71969…3+24⋅1.71969…2−16⋅1.71969…−4=−54.08571…u2​=1.49728…
Δu2​=∣1.49728…−1.71969…∣=0.22241…Δu2​=0.22241…
u3​=1.30324…:Δu3​=0.19403…
f(u2​)=−4⋅1.49728…5+4⋅1.49728…4+8⋅1.49728…3−8⋅1.49728…2−4⋅1.49728…+3=−4.06767…f′(u2​)=−20⋅1.49728…4+16⋅1.49728…3+24⋅1.49728…2−16⋅1.49728…−4=−20.96340…u3​=1.30324…
Δu3​=∣1.30324…−1.49728…∣=0.19403…Δu3​=0.19403…
u4​=1.05328…:Δu4​=0.24996…
f(u3​)=−4⋅1.30324…5+4⋅1.30324…4+8⋅1.30324…3−8⋅1.30324…2−4⋅1.30324…+3=−1.59173…f′(u3​)=−20⋅1.30324…4+16⋅1.30324…3+24⋅1.30324…2−16⋅1.30324…−4=−6.36786…u4​=1.05328…
Δu4​=∣1.05328…−1.30324…∣=0.24996…Δu4​=0.24996…
u5​=−5.80799…:Δu5​=6.86128…
f(u4​)=−4⋅1.05328…5+4⋅1.05328…4+8⋅1.05328…3−8⋅1.05328…2−4⋅1.05328…+3=−1.00255…f′(u4​)=−20⋅1.05328…4+16⋅1.05328…3+24⋅1.05328…2−16⋅1.05328…−4=−0.14611…u5​=−5.80799…
Δu5​=∣−5.80799…−1.05328…∣=6.86128…Δu5​=6.86128…
u6​=−4.64067…:Δu6​=1.16732…
f(u5​)=−4(−5.80799…)5+4(−5.80799…)4+8(−5.80799…)3−8(−5.80799…)2−4(−5.80799…)+3=29176.40873…f′(u5​)=−20(−5.80799…)4+16(−5.80799…)3+24(−5.80799…)2−16(−5.80799…)−4=−24994.29514…u6​=−4.64067…
Δu6​=∣−4.64067…−(−5.80799…)∣=1.16732…Δu6​=1.16732…
u7​=−3.71587…:Δu7​=0.92480…
f(u6​)=−4(−4.64067…)5+4(−4.64067…)4+8(−4.64067…)3−8(−4.64067…)2−4(−4.64067…)+3=9514.18126…f′(u6​)=−20(−4.64067…)4+16(−4.64067…)3+24(−4.64067…)2−16(−4.64067…)−4=−10287.81312…u7​=−3.71587…
Δu7​=∣−3.71587…−(−4.64067…)∣=0.92480…Δu7​=0.92480…
u8​=−2.98754…:Δu8​=0.72832…
f(u7​)=−4(−3.71587…)5+4(−3.71587…)4+8(−3.71587…)3−8(−3.71587…)2−4(−3.71587…)+3=3093.32373…f′(u7​)=−20(−3.71587…)4+16(−3.71587…)3+24(−3.71587…)2−16(−3.71587…)−4=−4247.14664…u8​=−2.98754…
Δu8​=∣−2.98754…−(−3.71587…)∣=0.72832…Δu8​=0.72832…
u9​=−2.41948…:Δu9​=0.56806…
f(u8​)=−4(−2.98754…)5+4(−2.98754…)4+8(−2.98754…)3−8(−2.98754…)2−4(−2.98754…)+3=1000.86681…f′(u8​)=−20(−2.98754…)4+16(−2.98754…)3+24(−2.98754…)2−16(−2.98754…)−4=−1761.89279…u9​=−2.41948…
Δu9​=∣−2.41948…−(−2.98754…)∣=0.56806…Δu9​=0.56806…
u10​=−1.98344…:Δu10​=0.43603…
f(u9​)=−4(−2.41948…)5+4(−2.41948…)4+8(−2.41948…)3−8(−2.41948…)2−4(−2.41948…)+3=321.25479…f′(u9​)=−20(−2.41948…)4+16(−2.41948…)3+24(−2.41948…)2−16(−2.41948…)−4=−736.76863…u10​=−1.98344…
Δu10​=∣−1.98344…−(−2.41948…)∣=0.43603…Δu10​=0.43603…
u11​=−1.65761…:Δu11​=0.32583…
f(u10​)=−4(−1.98344…)5+4(−1.98344…)4+8(−1.98344…)3−8(−1.98344…)2−4(−1.98344…)+3=101.73511…f′(u10​)=−20(−1.98344…)4+16(−1.98344…)3+24(−1.98344…)2−16(−1.98344…)−4=−312.23335…u11​=−1.65761…
Δu11​=∣−1.65761…−(−1.98344…)∣=0.32583…Δu11​=0.32583…
u12​=−1.42520…:Δu12​=0.23241…
f(u11​)=−4(−1.65761…)5+4(−1.65761…)4+8(−1.65761…)3−8(−1.65761…)2−4(−1.65761…)+3=31.47022…f′(u11​)=−20(−1.65761…)4+16(−1.65761…)3+24(−1.65761…)2−16(−1.65761…)−4=−135.40437…u12​=−1.42520…
Δu12​=∣−1.42520…−(−1.65761…)∣=0.23241…Δu12​=0.23241…
u13​=−1.27318…:Δu13​=0.15201…
f(u12​)=−4(−1.42520…)5+4(−1.42520…)4+8(−1.42520…)3−8(−1.42520…)2−4(−1.42520…)+3=9.31556…f′(u12​)=−20(−1.42520…)4+16(−1.42520…)3+24(−1.42520…)2−16(−1.42520…)−4=−61.28130…u13​=−1.27318…
Δu13​=∣−1.27318…−(−1.42520…)∣=0.15201…Δu13​=0.15201…
u14​=−1.19046…:Δu14​=0.08272…
f(u13​)=−4(−1.27318…)5+4(−1.27318…)4+8(−1.27318…)3−8(−1.27318…)2−4(−1.27318…)+3=2.50663…f′(u13​)=−20(−1.27318…)4+16(−1.27318…)3+24(−1.27318…)2−16(−1.27318…)−4=−30.29974…u14​=−1.19046…
Δu14​=∣−1.19046…−(−1.27318…)∣=0.08272…Δu14​=0.08272…
u15​=−1.16145…:Δu15​=0.02900…
f(u14​)=−4(−1.19046…)5+4(−1.19046…)4+8(−1.19046…)3−8(−1.19046…)2−4(−1.19046…)+3=0.52502…f′(u14​)=−20(−1.19046…)4+16(−1.19046…)3+24(−1.19046…)2−16(−1.19046…)−4=−18.10266…u15​=−1.16145…
Δu15​=∣−1.16145…−(−1.19046…)∣=0.02900…Δu15​=0.02900…
u16​=−1.15780…:Δu16​=0.00365…
f(u15​)=−4(−1.16145…)5+4(−1.16145…)4+8(−1.16145…)3−8(−1.16145…)2−4(−1.16145…)+3=0.05297…f′(u15​)=−20(−1.16145…)4+16(−1.16145…)3+24(−1.16145…)2−16(−1.16145…)−4=−14.50486…u16​=−1.15780…
Δu16​=∣−1.15780…−(−1.16145…)∣=0.00365…Δu16​=0.00365…
u17​=−1.15774…:Δu17​=0.00005…
f(u16​)=−4(−1.15780…)5+4(−1.15780…)4+8(−1.15780…)3−8(−1.15780…)2−4(−1.15780…)+3=0.00078…f′(u16​)=−20(−1.15780…)4+16(−1.15780…)3+24(−1.15780…)2−16(−1.15780…)−4=−14.07518…u17​=−1.15774…
Δu17​=∣−1.15774…−(−1.15780…)∣=0.00005…Δu17​=0.00005…
u18​=−1.15774…:Δu18​=1.29677E−8
f(u17​)=−4(−1.15774…)5+4(−1.15774…)4+8(−1.15774…)3−8(−1.15774…)2−4(−1.15774…)+3=1.82438E−7f′(u17​)=−20(−1.15774…)4+16(−1.15774…)3+24(−1.15774…)2−16(−1.15774…)−4=−14.06865…u18​=−1.15774…
Δu18​=∣−1.15774…−(−1.15774…)∣=1.29677E−8Δu18​=1.29677E−8
u≈−1.15774…
Áp dụng phép chia số lớn:u+1.15774…−4u5+4u4+8u3−8u2−4u+3​=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…≈0
Tìm một lời giải cho −4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0 bằng Newton-Raphson:u≈0.52439…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
Tìm f′(u):−16u3+25.89299…u2−3.98507…u−5.69314…
dud​(−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=−dud​(4u4)+dud​(8.63099…u3)−dud​(1.99253…u2)−dud​(5.69314…u)+dud​(2.59123…)
dud​(4u4)=16u3
dud​(4u4)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=4dud​(u4)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Rút gọn=16u3
dud​(8.63099…u3)=25.89299…u2
dud​(8.63099…u3)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=8.63099…dud​(u3)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=8.63099…⋅3u3−1
Rút gọn=25.89299…u2
dud​(1.99253…u2)=3.98507…u
dud​(1.99253…u2)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=1.99253…dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=1.99253…⋅2u2−1
Rút gọn=3.98507…u
dud​(5.69314…u)=5.69314…
dud​(5.69314…u)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=5.69314…dudu​
Áp dụng đạo hàm chung: dudu​=1=5.69314…⋅1
Rút gọn=5.69314…
dud​(2.59123…)=0
dud​(2.59123…)
Đạo hàm của một hằng số: dxd​(a)=0=0
=−16u3+25.89299…u2−3.98507…u−5.69314…+0
Rút gọn=−16u3+25.89299…u2−3.98507…u−5.69314…
Cho u0​=0Tính un+1​ cho đến Δun+1​<0.000001
u1​=0.45514…:Δu1​=0.45514…
f(u0​)=−4⋅04+8.63099…⋅03−1.99253…⋅02−5.69314…⋅0+2.59123…=2.59123…f′(u0​)=−16⋅03+25.89299…⋅02−3.98507…⋅0−5.69314…=−5.69314…u1​=0.45514…
Δu1​=∣0.45514…−0∣=0.45514…Δu1​=0.45514…
u2​=0.51796…:Δu2​=0.06281…
f(u1​)=−4⋅0.45514…4+8.63099…⋅0.45514…3−1.99253…⋅0.45514…2−5.69314…⋅0.45514…+2.59123…=0.22937…f′(u1​)=−16⋅0.45514…3+25.89299…⋅0.45514…2−3.98507…⋅0.45514…−5.69314…=−3.65154…u2​=0.51796…
Δu2​=∣0.51796…−0.45514…∣=0.06281…Δu2​=0.06281…
u3​=0.52432…:Δu3​=0.00635…
f(u2​)=−4⋅0.51796…4+8.63099…⋅0.51796…3−1.99253…⋅0.51796…2−5.69314…⋅0.51796…+2.59123…=0.01929…f′(u2​)=−16⋅0.51796…3+25.89299…⋅0.51796…2−3.98507…⋅0.51796…−5.69314…=−3.03391…u3​=0.52432…
Δu3​=∣0.52432…−0.51796…∣=0.00635…Δu3​=0.00635…
u4​=0.52439…:Δu4​=0.00006…
f(u3​)=−4⋅0.52432…4+8.63099…⋅0.52432…3−1.99253…⋅0.52432…2−5.69314…⋅0.52432…+2.59123…=0.00020…f′(u3​)=−16⋅0.52432…3+25.89299…⋅0.52432…2−3.98507…⋅0.52432…−5.69314…=−2.97053…u4​=0.52439…
Δu4​=∣0.52439…−0.52432…∣=0.00006…Δu4​=0.00006…
u5​=0.52439…:Δu5​=7.72366E−9
f(u4​)=−4⋅0.52439…4+8.63099…⋅0.52439…3−1.99253…⋅0.52439…2−5.69314…⋅0.52439…+2.59123…=2.29382E−8f′(u4​)=−16⋅0.52439…3+25.89299…⋅0.52439…2−3.98507…⋅0.52439…−5.69314…=−2.96985…u5​=0.52439…
Δu5​=∣0.52439…−0.52439…∣=7.72366E−9Δu5​=7.72366E−9
u≈0.52439…
Áp dụng phép chia số lớn:u−0.52439…−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…​=−4u3+6.53342…u2+1.43354…u−4.94140…
−4u3+6.53342…u2+1.43354…u−4.94140…≈0
Tìm một lời giải cho −4u3+6.53342…u2+1.43354…u−4.94140…=0 bằng Newton-Raphson:u≈−0.79147…
−4u3+6.53342…u2+1.43354…u−4.94140…=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=−4u3+6.53342…u2+1.43354…u−4.94140…
Tìm f′(u):−12u2+13.06685…u+1.43354…
dud​(−4u3+6.53342…u2+1.43354…u−4.94140…)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=−dud​(4u3)+dud​(6.53342…u2)+dud​(1.43354…u)−dud​(4.94140…)
dud​(4u3)=12u2
dud​(4u3)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=4dud​(u3)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=4⋅3u3−1
Rút gọn=12u2
dud​(6.53342…u2)=13.06685…u
dud​(6.53342…u2)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=6.53342…dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=6.53342…⋅2u2−1
Rút gọn=13.06685…u
dud​(1.43354…u)=1.43354…
dud​(1.43354…u)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=1.43354…dudu​
Áp dụng đạo hàm chung: dudu​=1=1.43354…⋅1
Rút gọn=1.43354…
dud​(4.94140…)=0
dud​(4.94140…)
Đạo hàm của một hằng số: dxd​(a)=0=0
=−12u2+13.06685…u+1.43354…−0
Rút gọn=−12u2+13.06685…u+1.43354…
Cho u0​=3Tính un+1​ cho đến Δun+1​<0.000001
u1​=2.26016…:Δu1​=0.73983…
f(u0​)=−4⋅33+6.53342…⋅32+1.43354…⋅3−4.94140…=−49.83990…f′(u0​)=−12⋅32+13.06685…⋅3+1.43354…=−67.36588…u1​=2.26016…
Δu1​=∣2.26016…−3∣=0.73983…Δu1​=0.73983…
u2​=1.78183…:Δu2​=0.47832…
f(u1​)=−4⋅2.26016…3+6.53342…⋅2.26016…2+1.43354…⋅2.26016…−4.94140…=−14.50903…f′(u1​)=−12⋅2.26016…2+13.06685…⋅2.26016…+1.43354…=−30.33318…u2​=1.78183…
Δu2​=∣1.78183…−2.26016…∣=0.47832…Δu2​=0.47832…
u3​=1.46256…:Δu3​=0.31927…
f(u2​)=−4⋅1.78183…3+6.53342…⋅1.78183…2+1.43354…⋅1.78183…−4.94140…=−4.27274…f′(u2​)=−12⋅1.78183…2+13.06685…⋅1.78183…+1.43354…=−13.38281…u3​=1.46256…
Δu3​=∣1.46256…−1.78183…∣=0.31927…Δu3​=0.31927…
u4​=1.19261…:Δu4​=0.26995…
f(u3​)=−4⋅1.46256…3+6.53342…⋅1.46256…2+1.43354…⋅1.46256…−4.94140…=−1.38340…f′(u3​)=−12⋅1.46256…2+13.06685…⋅1.46256…+1.43354…=−5.12454…u4​=1.19261…
Δu4​=∣1.19261…−1.46256…∣=0.26995…Δu4​=0.26995…
u5​=−13.10640…:Δu5​=14.29901…
f(u4​)=−4⋅1.19261…3+6.53342…⋅1.19261…2+1.43354…⋅1.19261…−4.94140…=−0.72421…f′(u4​)=−12⋅1.19261…2+13.06685…⋅1.19261…+1.43354…=−0.05064…u5​=−13.10640…
Δu5​=∣−13.10640…−1.19261…∣=14.29901…Δu5​=14.29901…
u6​=−8.57776…:Δu6​=4.52864…
f(u5​)=−4(−13.10640…)3+6.53342…(−13.10640…)2+1.43354…(−13.10640…)−4.94140…=10104.13392…f′(u5​)=−12(−13.10640…)2+13.06685…(−13.10640…)+1.43354…=−2231.16096…u6​=−8.57776…
Δu6​=∣−8.57776…−(−13.10640…)∣=4.52864…Δu6​=4.52864…
u7​=−5.57045…:Δu7​=3.00730…
f(u6​)=−4(−8.57776…)3+6.53342…(−8.57776…)2+1.43354…(−8.57776…)−4.94140…=2988.01817…f′(u6​)=−12(−8.57776…)2+13.06685…(−8.57776…)+1.43354…=−993.58713…u7​=−5.57045…
Δu7​=∣−5.57045…−(−8.57776…)∣=3.00730…Δu7​=3.00730…
u8​=−3.58447…:Δu8​=1.98598…
f(u7​)=−4(−5.57045…)3+6.53342…(−5.57045…)2+1.43354…(−5.57045…)−4.94140…=881.21142…f′(u7​)=−12(−5.57045…)2+13.06685…(−5.57045…)+1.43354…=−443.71510…u8​=−3.58447…
Δu8​=∣−3.58447…−(−5.57045…)∣=1.98598…Δu8​=1.98598…
u9​=−2.29137…:Δu9​=1.29310…
f(u8​)=−4(−3.58447…)3+6.53342…(−3.58447…)2+1.43354…(−3.58447…)−4.94140…=258.08452…f′(u8​)=−12(−3.58447…)2+13.06685…(−3.58447…)+1.43354…=−199.58579…u9​=−2.29137…
Δu9​=∣−2.29137…−(−3.58447…)∣=1.29310…Δu9​=1.29310…
u10​=−1.48056…:Δu10​=0.81081…
f(u9​)=−4(−2.29137…)3+6.53342…(−2.29137…)2+1.43354…(−2.29137…)−4.94140…=74.19938…f′(u9​)=−12(−2.29137…)2+13.06685…(−2.29137…)+1.43354…=−91.51226…u10​=−1.48056…
Δu10​=∣−1.48056…−(−2.29137…)∣=0.81081…Δu10​=0.81081…
u11​=−1.02282…:Δu11​=0.45773…
f(u10​)=−4(−1.48056…)3+6.53342…(−1.48056…)2+1.43354…(−1.48056…)−4.94140…=20.23972…f′(u10​)=−12(−1.48056…)2+13.06685…(−1.48056…)+1.43354…=−44.21745…u11​=−1.02282…
Δu11​=∣−1.02282…−(−1.48056…)∣=0.45773…Δu11​=0.45773…
u12​=−0.83056…:Δu12​=0.19226…
f(u11​)=−4(−1.02282…)3+6.53342…(−1.02282…)2+1.43354…(−1.02282…)−4.94140…=4.70771…f′(u11​)=−12(−1.02282…)2+13.06685…(−1.02282…)+1.43354…=−24.48576…u12​=−0.83056…
Δu12​=∣−0.83056…−(−1.02282…)∣=0.19226…Δu12​=0.19226…
u13​=−0.79288…:Δu13​=0.03767…
f(u12​)=−4(−0.83056…)3+6.53342…(−0.83056…)2+1.43354…(−0.83056…)−4.94140…=0.66678…f′(u12​)=−12(−0.83056…)2+13.06685…(−0.83056…)+1.43354…=−17.69741…u13​=−0.79288…
Δu13​=∣−0.79288…−(−0.83056…)∣=0.03767…Δu13​=0.03767…
u14​=−0.79147…:Δu14​=0.00140…
f(u13​)=−4(−0.79288…)3+6.53342…(−0.79288…)2+1.43354…(−0.79288…)−4.94140…=0.0232093455f′(u13​)=−12(−0.79288…)2+13.06685…(−0.79288…)+1.43354…=−16.47108…u14​=−0.79147…
Δu14​=∣−0.79147…−(−0.79288…)∣=0.00140…Δu14​=0.00140…
u15​=−0.79147…:Δu15​=1.9392E−6
f(u14​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=0.00003…f′(u14​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42588…u15​=−0.79147…
Δu15​=∣−0.79147…−(−0.79147…)∣=1.9392E−6Δu15​=1.9392E−6
u16​=−0.79147…:Δu16​=3.6702E−12
f(u15​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=6.0286E−11f′(u15​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42581…u16​=−0.79147…
Δu16​=∣−0.79147…−(−0.79147…)∣=3.6702E−12Δu16​=3.6702E−12
u≈−0.79147…
Áp dụng phép chia số lớn:u+0.79147…−4u3+6.53342…u2+1.43354…u−4.94140…​=−4u2+9.69933…u−6.24326…
−4u2+9.69933…u−6.24326…≈0
Tìm một lời giải cho −4u2+9.69933…u−6.24326…=0 bằng Newton-Raphson:Không có nghiệm cho u∈R
−4u2+9.69933…u−6.24326…=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=−4u2+9.69933…u−6.24326…
Tìm f′(u):−8u+9.69933…
dud​(−4u2+9.69933…u−6.24326…)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=−dud​(4u2)+dud​(9.69933…u)−dud​(6.24326…)
dud​(4u2)=8u
dud​(4u2)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=4dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Rút gọn=8u
dud​(9.69933…u)=9.69933…
dud​(9.69933…u)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=9.69933…dudu​
Áp dụng đạo hàm chung: dudu​=1=9.69933…⋅1
Rút gọn=9.69933…
dud​(6.24326…)=0
dud​(6.24326…)
Đạo hàm của một hằng số: dxd​(a)=0=0
=−8u+9.69933…−0
Rút gọn=−8u+9.69933…
Cho u0​=1Tính un+1​ cho đến Δun+1​<0.000001
u1​=1.32008…:Δu1​=0.32008…
f(u0​)=−4⋅12+9.69933…⋅1−6.24326…=−0.54392…f′(u0​)=−8⋅1+9.69933…=1.69933…u1​=1.32008…
Δu1​=∣1.32008…−1∣=0.32008…Δu1​=0.32008…
u2​=0.84428…:Δu2​=0.47579…
f(u1​)=−4⋅1.32008…2+9.69933…⋅1.32008…−6.24326…=−0.40980…f′(u1​)=−8⋅1.32008…+9.69933…=−0.86130…u2​=0.84428…
Δu2​=∣0.84428…−1.32008…∣=0.47579…Δu2​=0.47579…
u3​=1.15175…:Δu3​=0.30747…
f(u2​)=−4⋅0.84428…2+9.69933…⋅0.84428…−6.24326…=−0.90553…f′(u2​)=−8⋅0.84428…+9.69933…=2.94507…u3​=1.15175…
Δu3​=∣1.15175…−0.84428…∣=0.30747…Δu3​=0.30747…
u4​=1.93099…:Δu4​=0.77924…
f(u3​)=−4⋅1.15175…2+9.69933…⋅1.15175…−6.24326…=−0.37815…f′(u3​)=−8⋅1.15175…+9.69933…=0.48529…u4​=1.93099…
Δu4​=∣1.93099…−1.15175…∣=0.77924…Δu4​=0.77924…
u5​=1.50848…:Δu5​=0.42251…
f(u4​)=−4⋅1.93099…2+9.69933…⋅1.93099…−6.24326…=−2.42887…f′(u4​)=−8⋅1.93099…+9.69933…=−5.74865…u5​=1.50848…
Δu5​=∣1.50848…−1.93099…∣=0.42251…Δu5​=0.42251…
u6​=1.20700…:Δu6​=0.30147…
f(u5​)=−4⋅1.50848…2+9.69933…⋅1.50848…−6.24326…=−0.71406…f′(u5​)=−8⋅1.50848…+9.69933…=−2.36855…u6​=1.20700…
Δu6​=∣1.20700…−1.50848…∣=0.30147…Δu6​=0.30147…
u7​=9.60809…:Δu7​=8.40108…
f(u6​)=−4⋅1.20700…2+9.69933…⋅1.20700…−6.24326…=−0.36355…f′(u6​)=−8⋅1.20700…+9.69933…=0.04327…u7​=9.60809…
Δu7​=∣9.60809…−1.20700…∣=8.40108…Δu7​=8.40108…
u8​=5.40484…:Δu8​=4.20324…
f(u7​)=−4⋅9.60809…2+9.69933…⋅9.60809…−6.24326…=−282.31282…f′(u7​)=−8⋅9.60809…+9.69933…=−67.16539…u8​=5.40484…
Δu8​=∣5.40484…−9.60809…∣=4.20324…Δu8​=4.20324…
u9​=3.29779…:Δu9​=2.10704…
f(u8​)=−4⋅5.40484…2+9.69933…⋅5.40484…−6.24326…=−70.66918…f′(u8​)=−8⋅5.40484…+9.69933…=−33.53940…u9​=3.29779…
Δu9​=∣3.29779…−5.40484…∣=2.10704…Δu9​=2.10704…
u10​=2.23332…:Δu10​=1.06447…
f(u9​)=−4⋅3.29779…2+9.69933…⋅3.29779…−6.24326…=−17.75862…f′(u9​)=−8⋅3.29779…+9.69933…=−16.68301…u10​=2.23332…
Δu10​=∣2.23332…−3.29779…∣=1.06447…Δu10​=1.06447…
u11​=1.67836…:Δu11​=0.55495…
f(u10​)=−4⋅2.23332…2+9.69933…⋅2.23332…−6.24326…=−4.53241…f′(u10​)=−8⋅2.23332…+9.69933…=−8.16722…u11​=1.67836…
Δu11​=∣1.67836…−2.23332…∣=0.55495…Δu11​=0.55495…
u12​=1.34789…:Δu12​=0.33047…
f(u11​)=−4⋅1.67836…2+9.69933…⋅1.67836…−6.24326…=−1.23188…f′(u11​)=−8⋅1.67836…+9.69933…=−3.72761…u12​=1.34789…
Δu12​=∣1.34789…−1.67836…∣=0.33047…Δu12​=0.33047…
u13​=0.94482…:Δu13​=0.40307…
f(u12​)=−4⋅1.34789…2+9.69933…⋅1.34789…−6.24326…=−0.43685…f′(u12​)=−8⋅1.34789…+9.69933…=−1.08381…u13​=0.94482…
Δu13​=∣0.94482…−1.34789…∣=0.40307…Δu13​=0.40307…
Không thể tìm được lời giải
Các lời giải làu≈−1.15774…,u≈0.52439…,u≈−0.79147…
u≈−1.15774…,u≈0.52439…,u≈−0.79147…
Xác minh lời giải:u≈−1.15774…Sai,u≈0.52439…Đúng,u≈−0.79147…Đúng
Kiểm tra các lời giải bằng cách thay chúng vào−1+(1−u2)⋅21−u​=0
Loại bỏ những lời giải không đúng với phương trình.
Thay u≈−1.15774…:Sai
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=0
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=−2
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​
Áp dụng quy tắc −(−a)=a=−1+(1−(−1.15774…)2)⋅21+1.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​=−0.68076…2.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​
(−1.15774…)2=1.34038…
(−1.15774…)2
Áp dụng quy tắc số mũ: (−a)n=an,nếu n là chẵn(−1.15774…)2=1.15774…2=1.15774…2
1.15774…2=1.34038…=1.34038…
=2(1−1.34038…)1+1.15774…​
Thêm các số: 1+1.15774…=2.15774…=22.15774…​(1−1.34038…)
Trừ các số: 1−1.34038…=−0.34038…=2(−0.34038…)2.15774…​
Xóa dấu ngoặc đơn: (−a)=−a=−0.34038…⋅22.15774…​
Nhân các số: 0.34038…⋅2=0.68076…=−0.68076…2.15774…​
=−1−0.68076…2.15774…​
0.68076…2.15774…​=1
0.68076…2.15774…​
2.15774…​=1.46892…=0.68076…⋅1.46892…
Nhân các số: 0.68076…⋅1.46892…=1=1
=−1−1
Trừ các số: −1−1=−2=−2
−2=0
Sai
Thay u≈0.52439…:Đúng
−1+(1−0.52439…2)⋅21−0.52439…​=0
−1+(1−0.52439…2)⋅21−0.52439…​=5.0E−15
−1+(1−0.52439…2)⋅21−0.52439…​
(1−0.52439…2)⋅21−0.52439…​=1.45002…0.47560…​
(1−0.52439…2)⋅21−0.52439…​
0.52439…2=0.27498…=2(1−0.27498…)1−0.52439…​
Trừ các số: 1−0.52439…=0.47560…=20.47560…​(1−0.27498…)
Trừ các số: 1−0.27498…=0.72501…=2⋅0.72501…0.47560…​
Nhân các số: 0.72501…⋅2=1.45002…=1.45002…0.47560…​
=−1+1.45002…0.47560…​
1.45002…0.47560…​=1
1.45002…0.47560…​
0.47560…​=0.68964…=0.68964…⋅1.45002…
Nhân các số: 1.45002…⋅0.68964…=1=1
=−1+1
Cộng/Trừ các số: −1+1=5.0E−15=5.0E−15
5.0E−15=0
Đuˊng
Thay u≈−0.79147…:Đúng
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=0
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=5.0E−15
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​
Áp dụng quy tắc −(−a)=a=−1+(1−(−0.79147…)2)⋅21+0.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​=0.74712…1.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​
(−0.79147…)2=0.62643…
(−0.79147…)2
Áp dụng quy tắc số mũ: (−a)n=an,nếu n là chẵn(−0.79147…)2=0.79147…2=0.79147…2
0.79147…2=0.62643…=0.62643…
=2(1−0.62643…)1+0.79147…​
Thêm các số: 1+0.79147…=1.79147…=21.79147…​(1−0.62643…)
Trừ các số: 1−0.62643…=0.37356…=2⋅0.37356…1.79147…​
Nhân các số: 0.37356…⋅2=0.74712…=0.74712…1.79147…​
=−1+0.74712…1.79147…​
0.74712…1.79147…​=1
0.74712…1.79147…​
1.79147…​=1.33846…=0.74712…⋅1.33846…
Nhân các số: 0.74712…⋅1.33846…=1=1
=−1+1
Cộng/Trừ các số: −1+1=5.0E−15=5.0E−15
5.0E−15=0
Đuˊng
Các lời giải làu≈0.52439…,u≈−0.79147…
Thay thế lại u=cos(x)cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)=0.52439…:x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=0.52439…
Áp dụng tính chất nghịch đảo lượng giác
cos(x)=0.52439…
Các lời giải chung cho cos(x)=0.52439…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=−0.79147…:x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
cos(x)=−0.79147…
Áp dụng tính chất nghịch đảo lượng giác
cos(x)=−0.79147…
Các lời giải chung cho cos(x)=−0.79147…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Kết hợp tất cả các cách giảix=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn,x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Hiển thị các lời giải ở dạng thập phânx=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn

Đồ Thị

Sorry, your browser does not support this application
Xem đồ thị tương tác

Ví dụ phổ biến

cos(2x-1)= 1/2cos(2x−1)=21​tan(a)= 5/3tan(a)=35​sin(x)=0.43333333sin(x)=0.43333333cos^6(x)+3cos^3(x)-4=0cos6(x)+3cos3(x)−4=0-sin^2(x)=-1−sin2(x)=−1
Công cụ học tậpTrình giải toán AIAI ChatBảng tínhThực HànhBảng Ghi ChúMáy tínhMáy Tính Vẽ Đồ ThịMáy Tính Hình HọcXác minh giải pháp
Ứng dụngỨng dụng Symbolab (Android)Máy Tính Vẽ Đồ Thị (Android)Thực Hành (Android)Ứng dụng Symbolab (iOS)Máy Tính Vẽ Đồ Thị (iOS)Thực Hành (iOS)Tiện ích mở rộng Chrome
Công tyGiới thiệu về SymbolabBlogTrợ Giúp
Hợp phápQuyền Riêng TưService TermsChính sách cookieCài đặt cookieKhông bán hoặc chia sẻ thông tin cá nhân của tôiBản quyền, Nguyên tắc cộng đồng, DSA và các tài nguyên pháp lý khácTrung tâm pháp lý Learneo
Truyền thông xã hội
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024