Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos^3(x)=4cos^3(x)-3cos(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos3(x)=4cos3(x)−3cos(x)

Lösung

x=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn
+1
Grad
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n,x=0∘+360∘n
Schritte zur Lösung
cos3(x)=4cos3(x)−3cos(x)
Löse mit Substitution
cos3(x)=4cos3(x)−3cos(x)
Angenommen: cos(x)=uu3=4u3−3u
u3=4u3−3u:u=0,u=−1,u=1
u3=4u3−3u
Tausche die Seiten4u3−3u=u3
Verschiebe u3auf die linke Seite
4u3−3u=u3
Subtrahiere u3 von beiden Seiten4u3−3u−u3=u3−u3
Vereinfache3u3−3u=0
3u3−3u=0
Faktorisiere 3u3−3u:3u(u+1)(u−1)
3u3−3u
Klammere gleiche Terme aus 3u:3u(u2−1)
3u3−3u
Wende Exponentenregel an: ab+c=abacu3=u2u=3u2u−3u
Klammere gleiche Terme aus 3u=3u(u2−1)
=3u(u2−1)
Faktorisiere u2−1:(u+1)(u−1)
u2−1
Schreibe 1um: 12=u2−12
Wende Formel zur Differenz von zwei Quadraten an:x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=3u(u+1)(u−1)
3u(u+1)(u−1)=0
Anwendung des Nullfaktorprinzips: Wenn ab=0dann a=0oder b=0u=0oru+1=0oru−1=0
Löse u+1=0:u=−1
u+1=0
Verschiebe 1auf die rechte Seite
u+1=0
Subtrahiere 1 von beiden Seitenu+1−1=0−1
Vereinfacheu=−1
u=−1
Löse u−1=0:u=1
u−1=0
Verschiebe 1auf die rechte Seite
u−1=0
Füge 1 zu beiden Seiten hinzuu−1+1=0+1
Vereinfacheu=1
u=1
Die Lösungen sindu=0,u=−1,u=1
Setze in u=cos(x)eincos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Allgemeine Lösung für cos(x)=0
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Allgemeine Lösung für cos(x)=−1
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=1:x=2πn
cos(x)=1
Allgemeine Lösung für cos(x)=1
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Löse x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Kombiniere alle Lösungenx=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

4sin^4(x)+12cos^2(x)-7=04sin4(x)+12cos2(x)−7=05sin(a)=45sin(a)=42cos^4(x)+8sin^2(x)=52cos4(x)+8sin2(x)=5cos^4(a)+cos^2(a)=1cos4(a)+cos2(a)=11-cos(x)=2+cos(x)1−cos(x)=2+cos(x)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024