解答
sin(A)−0.6⋅cos(A)=9.82.77
解答
A=−2.84598…+2πn,A=0.78523…+2πn
+1
度数
A=−163.06288…∘+360∘n,A=44.99039…∘+360∘n求解步骤
sin(A)−0.6cos(A)=9.82.77
两边加上 0.6cos(A)sin(A)=0.28265…+0.6cos(A)
两边进行平方sin2(A)=(0.28265…+0.6cos(A))2
两边减去 (0.28265…+0.6cos(A))2sin2(A)−0.07989…−0.33918…cos(A)−0.36cos2(A)=0
使用三角恒等式改写
−0.07989…+sin2(A)−0.33918…cos(A)−0.36cos2(A)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−0.07989…+1−cos2(A)−0.33918…cos(A)−0.36cos2(A)
化简 −0.07989…+1−cos2(A)−0.33918…cos(A)−0.36cos2(A):−1.36cos2(A)−0.33918…cos(A)+0.92010…
−0.07989…+1−cos2(A)−0.33918…cos(A)−0.36cos2(A)
对同类项分组=−cos2(A)−0.33918…cos(A)−0.36cos2(A)−0.07989…+1
同类项相加:−cos2(A)−0.36cos2(A)=−1.36cos2(A)=−1.36cos2(A)−0.33918…cos(A)−0.07989…+1
数字相加/相减:−0.07989…+1=0.92010…=−1.36cos2(A)−0.33918…cos(A)+0.92010…
=−1.36cos2(A)−0.33918…cos(A)+0.92010…
0.92010…−0.33918…cos(A)−1.36cos2(A)=0
用替代法求解
0.92010…−0.33918…cos(A)−1.36cos2(A)=0
令:cos(A)=u0.92010…−0.33918…u−1.36u2=0
0.92010…−0.33918…u−1.36u2=0:u=−2.720.33918…+5.12042…,u=2.725.12042…−0.33918…
0.92010…−0.33918…u−1.36u2=0
改写成标准形式 ax2+bx+c=0−1.36u2−0.33918…u+0.92010…=0
使用求根公式求解
−1.36u2−0.33918…u+0.92010…=0
二次方程求根公式:
若 a=−1.36,b=−0.33918…,c=0.92010…u1,2=2(−1.36)−(−0.33918…)±(−0.33918…)2−4(−1.36)⋅0.92010…
u1,2=2(−1.36)−(−0.33918…)±(−0.33918…)2−4(−1.36)⋅0.92010…
(−0.33918…)2−4(−1.36)⋅0.92010…=5.12042…
(−0.33918…)2−4(−1.36)⋅0.92010…
使用法则 −(−a)=a=(−0.33918…)2+4⋅1.36⋅0.92010…
使用指数法则: (−a)n=an,若 n 是偶数(−0.33918…)2=0.33918…2=0.33918…2+4⋅0.92010…⋅1.36
数字相乘:4⋅1.36⋅0.92010…=5.00538…=0.33918…2+5.00538…
0.33918…2=0.11504…=0.11504…+5.00538…
数字相加:0.11504…+5.00538…=5.12042…=5.12042…
u1,2=2(−1.36)−(−0.33918…)±5.12042…
将解分隔开u1=2(−1.36)−(−0.33918…)+5.12042…,u2=2(−1.36)−(−0.33918…)−5.12042…
u=2(−1.36)−(−0.33918…)+5.12042…:−2.720.33918…+5.12042…
2(−1.36)−(−0.33918…)+5.12042…
去除括号: (−a)=−a,−(−a)=a=−2⋅1.360.33918…+5.12042…
数字相乘:2⋅1.36=2.72=−2.720.33918…+5.12042…
使用分式法则: −ba=−ba=−2.720.33918…+5.12042…
u=2(−1.36)−(−0.33918…)−5.12042…:2.725.12042…−0.33918…
2(−1.36)−(−0.33918…)−5.12042…
去除括号: (−a)=−a,−(−a)=a=−2⋅1.360.33918…−5.12042…
数字相乘:2⋅1.36=2.72=−2.720.33918…−5.12042…
使用分式法则: −b−a=ba0.33918…−5.12042…=−(5.12042…−0.33918…)=2.725.12042…−0.33918…
二次方程组的解是:u=−2.720.33918…+5.12042…,u=2.725.12042…−0.33918…
u=cos(A)代回cos(A)=−2.720.33918…+5.12042…,cos(A)=2.725.12042…−0.33918…
cos(A)=−2.720.33918…+5.12042…,cos(A)=2.725.12042…−0.33918…
cos(A)=−2.720.33918…+5.12042…:A=arccos(−2.720.33918…+5.12042…)+2πn,A=−arccos(−2.720.33918…+5.12042…)+2πn
cos(A)=−2.720.33918…+5.12042…
使用反三角函数性质
cos(A)=−2.720.33918…+5.12042…
cos(A)=−2.720.33918…+5.12042…的通解cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnA=arccos(−2.720.33918…+5.12042…)+2πn,A=−arccos(−2.720.33918…+5.12042…)+2πn
A=arccos(−2.720.33918…+5.12042…)+2πn,A=−arccos(−2.720.33918…+5.12042…)+2πn
cos(A)=2.725.12042…−0.33918…:A=arccos(2.725.12042…−0.33918…)+2πn,A=2π−arccos(2.725.12042…−0.33918…)+2πn
cos(A)=2.725.12042…−0.33918…
使用反三角函数性质
cos(A)=2.725.12042…−0.33918…
cos(A)=2.725.12042…−0.33918…的通解cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnA=arccos(2.725.12042…−0.33918…)+2πn,A=2π−arccos(2.725.12042…−0.33918…)+2πn
A=arccos(2.725.12042…−0.33918…)+2πn,A=2π−arccos(2.725.12042…−0.33918…)+2πn
合并所有解A=arccos(−2.720.33918…+5.12042…)+2πn,A=−arccos(−2.720.33918…+5.12042…)+2πn,A=arccos(2.725.12042…−0.33918…)+2πn,A=2π−arccos(2.725.12042…−0.33918…)+2πn
将解代入原方程进行验证
将它们代入 sin(A)−0.6cos(A)=9.82.77检验解是否符合
去除与方程不符的解。
检验 arccos(−2.720.33918…+5.12042…)+2πn的解:假
arccos(−2.720.33918…+5.12042…)+2πn
代入 n=1arccos(−2.720.33918…+5.12042…)+2π1
对于 sin(A)−0.6cos(A)=9.82.77代入A=arccos(−2.720.33918…+5.12042…)+2π1sin(arccos(−2.720.33918…+5.12042…)+2π1)−0.6cos(arccos(−2.720.33918…+5.12042…)+2π1)=9.82.77
整理后得0.86529…=0.28265…
⇒假
检验 −arccos(−2.720.33918…+5.12042…)+2πn的解:真
−arccos(−2.720.33918…+5.12042…)+2πn
代入 n=1−arccos(−2.720.33918…+5.12042…)+2π1
对于 sin(A)−0.6cos(A)=9.82.77代入A=−arccos(−2.720.33918…+5.12042…)+2π1sin(−arccos(−2.720.33918…+5.12042…)+2π1)−0.6cos(−arccos(−2.720.33918…+5.12042…)+2π1)=9.82.77
整理后得0.28265…=0.28265…
⇒真
检验 arccos(2.725.12042…−0.33918…)+2πn的解:真
arccos(2.725.12042…−0.33918…)+2πn
代入 n=1arccos(2.725.12042…−0.33918…)+2π1
对于 sin(A)−0.6cos(A)=9.82.77代入A=arccos(2.725.12042…−0.33918…)+2π1sin(arccos(2.725.12042…−0.33918…)+2π1)−0.6cos(arccos(2.725.12042…−0.33918…)+2π1)=9.82.77
整理后得0.28265…=0.28265…
⇒真
检验 2π−arccos(2.725.12042…−0.33918…)+2πn的解:假
2π−arccos(2.725.12042…−0.33918…)+2πn
代入 n=12π−arccos(2.725.12042…−0.33918…)+2π1
对于 sin(A)−0.6cos(A)=9.82.77代入A=2π−arccos(2.725.12042…−0.33918…)+2π1sin(2π−arccos(2.725.12042…−0.33918…)+2π1)−0.6cos(2π−arccos(2.725.12042…−0.33918…)+2π1)=9.82.77
整理后得−1.13132…=0.28265…
⇒假
A=−arccos(−2.720.33918…+5.12042…)+2πn,A=arccos(2.725.12042…−0.33918…)+2πn
以小数形式表示解A=−2.84598…+2πn,A=0.78523…+2πn