解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
AI Chat
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 三角函数 >

证明 sec^2(B)-csc^2(B)=(tan(B)-cot(B))/(sin(B)cos(B))

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

证明 sec2(B)−csc2(B)=sin(B)cos(B)tan(B)−cot(B)​

解答

真
求解步骤
sec2(B)−csc2(B)=sin(B)cos(B)tan(B)−cot(B)​
调整右侧sin(B)cos(B)tan(B)−cot(B)​
用 sin, cos 表示
cos(B)sin(B)−cot(B)+tan(B)​
使用基本三角恒等式: cot(x)=sin(x)cos(x)​=cos(B)sin(B)−sin(B)cos(B)​+tan(B)​
使用基本三角恒等式: tan(x)=cos(x)sin(x)​=cos(B)sin(B)−sin(B)cos(B)​+cos(B)sin(B)​​
化简 cos(B)sin(B)−sin(B)cos(B)​+cos(B)sin(B)​​:cos2(B)sin2(B)−cos2(B)+sin2(B)​
cos(B)sin(B)−sin(B)cos(B)​+cos(B)sin(B)​​
化简 −sin(B)cos(B)​+cos(B)sin(B)​:sin(B)cos(B)−cos2(B)+sin2(B)​
−sin(B)cos(B)​+cos(B)sin(B)​
sin(B),cos(B)的最小公倍数:sin(B)cos(B)
sin(B),cos(B)
最小公倍数 (LCM)
计算出由出现在 sin(B) 或 cos(B)中的因子组成的表达式=sin(B)cos(B)
根据最小公倍数调整分式
将每个分子乘以其分母转变为最小公倍数所要乘以的同一数值 sin(B)cos(B)
对于 sin(B)cos(B)​:将分母和分子乘以 cos(B)sin(B)cos(B)​=sin(B)cos(B)cos(B)cos(B)​=sin(B)cos(B)cos2(B)​
对于 cos(B)sin(B)​:将分母和分子乘以 sin(B)cos(B)sin(B)​=cos(B)sin(B)sin(B)sin(B)​=sin(B)cos(B)sin2(B)​
=−sin(B)cos(B)cos2(B)​+sin(B)cos(B)sin2(B)​
因为分母相等,所以合并分式: ca​±cb​=ca±b​=sin(B)cos(B)−cos2(B)+sin2(B)​
=cos(B)sin(B)sin(B)cos(B)−cos2(B)+sin2(B)​​
使用分式法则: acb​​=c⋅ab​=sin(B)cos(B)cos(B)sin(B)−cos2(B)+sin2(B)​
sin(B)cos(B)cos(B)sin(B)=cos2(B)sin2(B)
sin(B)cos(B)cos(B)sin(B)
使用指数法则: ab⋅ac=ab+ccos(B)cos(B)=cos1+1(B)=sin(B)cos1+1(B)sin(B)
数字相加:1+1=2=sin(B)cos2(B)sin(B)
使用指数法则: ab⋅ac=ab+csin(B)sin(B)=sin1+1(B)=cos2(B)sin1+1(B)
数字相加:1+1=2=cos2(B)sin2(B)
=cos2(B)sin2(B)−cos2(B)+sin2(B)​
=cos2(B)sin2(B)−cos2(B)+sin2(B)​
=cos2(B)sin2(B)−cos2(B)+sin2(B)​
使用三角恒等式改写
使用基本三角恒等式: sin(x)=csc(x)1​cos2(B)(csc(B)1​)2−cos2(B)+(csc(B)1​)2​
使用基本三角恒等式: cos(x)=sec(x)1​(sec(B)1​)2(csc(B)1​)2−(sec(B)1​)2+(csc(B)1​)2​
化简
(sec(B)1​)2(csc(B)1​)2−(sec(B)1​)2+(csc(B)1​)2​
(sec(B)1​)2=sec2(B)1​
(sec(B)1​)2
使用指数法则: (ba​)c=bcac​=sec2(B)12​
使用法则 1a=112=1=sec2(B)1​
=(csc(B)1​)2sec2(B)1​−(sec(B)1​)2+(csc(B)1​)2​
(csc(B)1​)2=csc2(B)1​
(csc(B)1​)2
使用指数法则: (ba​)c=bcac​=csc2(B)12​
使用法则 1a=112=1=csc2(B)1​
=sec2(B)1​⋅csc2(B)1​−(sec(B)1​)2+(csc(B)1​)2​
(sec(B)1​)2=sec2(B)1​
(sec(B)1​)2
使用指数法则: (ba​)c=bcac​=sec2(B)12​
使用法则 1a=112=1=sec2(B)1​
(csc(B)1​)2=csc2(B)1​
(csc(B)1​)2
使用指数法则: (ba​)c=bcac​=csc2(B)12​
使用法则 1a=112=1=csc2(B)1​
=sec2(B)1​⋅csc2(B)1​−sec2(B)1​+csc2(B)1​​
乘 sec2(B)1​⋅csc2(B)1​:sec2(B)csc2(B)1​
sec2(B)1​⋅csc2(B)1​
分式相乘: ba​⋅dc​=b⋅da⋅c​=sec2(B)csc2(B)1⋅1​
数字相乘:1⋅1=1=sec2(B)csc2(B)1​
=sec2(B)csc2(B)1​−sec2(B)1​+csc2(B)1​​
化简 −sec2(B)1​+csc2(B)1​:sec2(B)csc2(B)−csc2(B)+sec2(B)​
−sec2(B)1​+csc2(B)1​
sec2(B),csc2(B)的最小公倍数:sec2(B)csc2(B)
sec2(B),csc2(B)
最小公倍数 (LCM)
计算出由出现在 sec2(B) 或 csc2(B)中的因子组成的表达式=sec2(B)csc2(B)
根据最小公倍数调整分式
将每个分子乘以其分母转变为最小公倍数所要乘以的同一数值 sec2(B)csc2(B)
对于 sec2(B)1​:将分母和分子乘以 csc2(B)sec2(B)1​=sec2(B)csc2(B)1⋅csc2(B)​=sec2(B)csc2(B)csc2(B)​
对于 csc2(B)1​:将分母和分子乘以 sec2(B)csc2(B)1​=csc2(B)sec2(B)1⋅sec2(B)​=sec2(B)csc2(B)sec2(B)​
=−sec2(B)csc2(B)csc2(B)​+sec2(B)csc2(B)sec2(B)​
因为分母相等,所以合并分式: ca​±cb​=ca±b​=sec2(B)csc2(B)−csc2(B)+sec2(B)​
=sec2(B)csc2(B)1​sec2(B)csc2(B)−csc2(B)+sec2(B)​​
分式相除: dc​ba​​=b⋅ca⋅d​=sec2(B)csc2(B)⋅1(−csc2(B)+sec2(B))sec2(B)csc2(B)​
整理后得=sec2(B)csc2(B)(−csc2(B)+sec2(B))sec2(B)csc2(B)​
约分:sec2(B)=−csc2(B)(−csc2(B)+sec2(B))csc2(B)​
约分:csc2(B)=−−csc2(B)+sec2(B)
−csc2(B)+sec2(B)
−csc2(B)+sec2(B)
=sec2(B)−csc2(B)
我们已展示,在两侧可以有相同的形式⇒真

流行的例子

证明 2+sec(a)cos(a)=3prove2+sec(a)cos(a)=3证明 5cos^2(θ)+2sin^2(θ)=3cos^2(θ)+2prove5cos2(θ)+2sin2(θ)=3cos2(θ)+2证明 (sec(a))/(tan(a)+cot(a))=sin(a)provetan(a)+cot(a)sec(a)​=sin(a)证明 sin((9pi)/2+x)=cos(x)provesin(29π​+x)=cos(x)证明 cos^4(β)-sin^4(β)=cos(2β)provecos4(β)−sin4(β)=cos(2β)
学习工具人工智能数学求解器AI Chat工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序
公司关于 Symbolab日志帮助
合法的隐私权Service TermsCookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024