Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

beweisen (sin(pi-x))/(sin(x+pi/2))=tan(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

beweisen sin(x+2π​)sin(π−x)​=tan(x)

Lösung

Wahr
Schritte zur Lösung
sin(x+2π​)sin(π−x)​=tan(x)
Manipuliere die linke Seitesin(x+2π​)sin(π−x)​
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(x+2π​)
Benutze die Identität der Winkelsumme: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(x)cos(2π​)+cos(x)sin(2π​)
Vereinfache sin(x)cos(2π​)+cos(x)sin(2π​):cos(x)
sin(x)cos(2π​)+cos(x)sin(2π​)
sin(x)cos(2π​)=0
sin(x)cos(2π​)
Vereinfache cos(2π​):0
cos(2π​)
Verwende die folgende triviale Identität:cos(2π​)=0
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅sin(x)
Wende Regel an 0⋅a=0=0
cos(x)sin(2π​)=cos(x)
cos(x)sin(2π​)
Vereinfache sin(2π​):1
sin(2π​)
Verwende die folgende triviale Identität:sin(2π​)=1
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=1
=1⋅cos(x)
Multipliziere: cos(x)⋅1=cos(x)=cos(x)
=0+cos(x)
0+cos(x)=cos(x)=cos(x)
=cos(x)
=cos(x)sin(π−x)​
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(π−x)
Benutze die Winkel-Differenz-Identität: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(π)cos(x)−cos(π)sin(x)
Vereinfache sin(π)cos(x)−cos(π)sin(x):sin(x)
sin(π)cos(x)−cos(π)sin(x)
sin(π)cos(x)=0
sin(π)cos(x)
Vereinfache sin(π):0
sin(π)
Verwende die folgende triviale Identität:sin(π)=0
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
=0⋅cos(x)
Wende Regel an 0⋅a=0=0
cos(π)sin(x)=−sin(x)
cos(π)sin(x)
Vereinfache cos(π):−1
cos(π)
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅sin(x)
Multipliziere: 1⋅sin(x)=sin(x)=−sin(x)
=0−(−sin(x))
Fasse zusammen=sin(x)
=sin(x)
=cos(x)sin(x)​
Verwende die grundlegende trigonometrische Identität: cos(x)sin(x)​=tan(x)=tan(x)
Wir haben gezeigt, dass beide Seiten die gleiche Form annehmen können⇒Wahr

Beliebte Beispiele

beweisen (cos^2(x))/(1-sin(x))=(csc(x)+1)/(csc(x))prove1−sin(x)cos2(x)​=csc(x)csc(x)+1​beweisen cos(3x)=cos^3(x)-3sin^2(x)cos(x)provecos(3x)=cos3(x)−3sin2(x)cos(x)beweisen (1+cot^2(x))tan(x)=csc(x)sec(x)prove(1+cot2(x))tan(x)=csc(x)sec(x)beweisen sin(a+b)+sin(a-b)=2sin(a)cos(b)provesin(a+b)+sin(a−b)=2sin(a)cos(b)beweisen (cos(x))(1+tan(x))^2=sec(x)+2sin(x)prove(cos(x))(1+tan(x))2=sec(x)+2sin(x)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024