Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(2θ-pi/3)=-1/2

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(2θ−3π​)=−21​

Lösung

θ=πn+43π​,θ=πn+1213π​
+1
Grad
θ=135∘+180∘n,θ=195∘+180∘n
Schritte zur Lösung
sin(2θ−3π​)=−21​
Allgemeine Lösung für sin(2θ−3π​)=−21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
2θ−3π​=67π​+2πn,2θ−3π​=611π​+2πn
2θ−3π​=67π​+2πn,2θ−3π​=611π​+2πn
Löse 2θ−3π​=67π​+2πn:θ=πn+43π​
2θ−3π​=67π​+2πn
Verschiebe 3π​auf die rechte Seite
2θ−3π​=67π​+2πn
Füge 3π​ zu beiden Seiten hinzu2θ−3π​+3π​=67π​+2πn+3π​
Vereinfache
2θ−3π​+3π​=67π​+2πn+3π​
Vereinfache 2θ−3π​+3π​:2θ
2θ−3π​+3π​
Addiere gleiche Elemente: −3π​+3π​=0
=2θ
Vereinfache 67π​+2πn+3π​:2πn+23π​
67π​+2πn+3π​
Fasse gleiche Terme zusammen=2πn+3π​+67π​
kleinstes gemeinsames Vielfache von3,6:6
3,6
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 3:3
3
3 ist eine Primzahl, deshalb ist keine Faktorisierung möglich =3
Primfaktorzerlegung von 6:2⋅3
6
6ist durch 26=3⋅2teilbar=2⋅3
2,3 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅3
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 3 oder 6vorkommt=3⋅2
Multipliziere die Zahlen: 3⋅2=6=6
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 6
Für 3π​:multipliziere den Nenner und Zähler mit 23π​=3⋅2π2​=6π2​
=6π2​+67π​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=6π2+7π​
Addiere gleiche Elemente: 2π+7π=9π=69π​
Streiche die gemeinsamen Faktoren: 3=2πn+23π​
2θ=2πn+23π​
2θ=2πn+23π​
2θ=2πn+23π​
Teile beide Seiten durch 2
2θ=2πn+23π​
Teile beide Seiten durch 222θ​=22πn​+223π​​
Vereinfache
22θ​=22πn​+223π​​
Vereinfache 22θ​:θ
22θ​
Teile die Zahlen: 22​=1=θ
Vereinfache 22πn​+223π​​:πn+43π​
22πn​+223π​​
22πn​=πn
22πn​
Teile die Zahlen: 22​=1=πn
223π​​=43π​
223π​​
Wende Bruchregel an: acb​​=c⋅ab​=2⋅23π​
Multipliziere die Zahlen: 2⋅2=4=43π​
=πn+43π​
θ=πn+43π​
θ=πn+43π​
θ=πn+43π​
Löse 2θ−3π​=611π​+2πn:θ=πn+1213π​
2θ−3π​=611π​+2πn
Verschiebe 3π​auf die rechte Seite
2θ−3π​=611π​+2πn
Füge 3π​ zu beiden Seiten hinzu2θ−3π​+3π​=611π​+2πn+3π​
Vereinfache
2θ−3π​+3π​=611π​+2πn+3π​
Vereinfache 2θ−3π​+3π​:2θ
2θ−3π​+3π​
Addiere gleiche Elemente: −3π​+3π​=0
=2θ
Vereinfache 611π​+2πn+3π​:2πn+613π​
611π​+2πn+3π​
Fasse gleiche Terme zusammen=2πn+3π​+611π​
kleinstes gemeinsames Vielfache von3,6:6
3,6
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 3:3
3
3 ist eine Primzahl, deshalb ist keine Faktorisierung möglich =3
Primfaktorzerlegung von 6:2⋅3
6
6ist durch 26=3⋅2teilbar=2⋅3
2,3 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅3
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 3 oder 6vorkommt=3⋅2
Multipliziere die Zahlen: 3⋅2=6=6
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 6
Für 3π​:multipliziere den Nenner und Zähler mit 23π​=3⋅2π2​=6π2​
=6π2​+611π​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=6π2+11π​
Addiere gleiche Elemente: 2π+11π=13π=2πn+613π​
2θ=2πn+613π​
2θ=2πn+613π​
2θ=2πn+613π​
Teile beide Seiten durch 2
2θ=2πn+613π​
Teile beide Seiten durch 222θ​=22πn​+2613π​​
Vereinfache
22θ​=22πn​+2613π​​
Vereinfache 22θ​:θ
22θ​
Teile die Zahlen: 22​=1=θ
Vereinfache 22πn​+2613π​​:πn+1213π​
22πn​+2613π​​
22πn​=πn
22πn​
Teile die Zahlen: 22​=1=πn
2613π​​=1213π​
2613π​​
Wende Bruchregel an: acb​​=c⋅ab​=6⋅213π​
Multipliziere die Zahlen: 6⋅2=12=1213π​
=πn+1213π​
θ=πn+1213π​
θ=πn+1213π​
θ=πn+1213π​
θ=πn+43π​,θ=πn+1213π​

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

7cos(θ)+sqrt(20)=07cos(θ)+20​=0sec^2(x)= 1/2 csc^2(x)+tan^2(x)sec2(x)=21​csc2(x)+tan2(x)4cos(2θ)-3cos(θ)+4=-cos(θ)+34cos(2θ)−3cos(θ)+4=−cos(θ)+3cos(2x)=0.28cos(2x)=0.28cos(3x)=sqrt(3)sin(3x)cos(3x)=3​sin(3x)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024