Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
AI Chat
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

4cosh(x)-sinh(x)=8

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

4cosh(x)−sinh(x)=8

Solución

x=ln(5),x=−ln(3)
+1
Grados
x=92.21399…∘,x=−62.94584…∘
Pasos de solución
4cosh(x)−sinh(x)=8
Re-escribir usando identidades trigonométricas
4cosh(x)−sinh(x)=8
Utilizar la identidad hiperbólica: sinh(x)=2ex−e−x​4cosh(x)−2ex−e−x​=8
Utilizar la identidad hiperbólica: cosh(x)=2ex+e−x​4⋅2ex+e−x​−2ex−e−x​=8
4⋅2ex+e−x​−2ex−e−x​=8
4⋅2ex+e−x​−2ex−e−x​=8:x=ln(5),x=−ln(3)
4⋅2ex+e−x​−2ex−e−x​=8
Multiplicar ambos lados por 24⋅2ex+e−x​⋅2−2ex−e−x​⋅2=8⋅2
Simplificar4(ex+e−x)−(ex−e−x)=16
Aplicar las leyes de los exponentes
4(ex+e−x)−(ex−e−x)=16
Aplicar las leyes de los exponentes: abc=(ab)ce−x=(ex)−14(ex+(ex)−1)−(ex−(ex)−1)=16
4(ex+(ex)−1)−(ex−(ex)−1)=16
Re escribir la ecuación con ex=u4(u+(u)−1)−(u−(u)−1)=16
Resolver 4(u+u−1)−(u−u−1)=16:u=5,u=31​
4(u+u−1)−(u−u−1)=16
Simplificar4(u+u1​)−(u−u1​)=16
Simplificar −(u−u1​):−u+u1​
−(u−u1​)
Poner los parentesis=−(u)−(−u1​)
Aplicar las reglas de los signos−(−a)=a,−(a)=−a=−u+u1​
4(u+u1​)−u+u1​=16
Multiplicar ambos lados por u
4(u+u1​)−u+u1​=16
Multiplicar ambos lados por u4(u+u1​)u−uu+u1​u=16u
Simplificar
4(u+u1​)u−uu+u1​u=16u
Simplificar −uu:−u2
−uu
Aplicar las leyes de los exponentes: ab⋅ac=ab+cuu=u1+1=−u1+1
Sumar: 1+1=2=−u2
Simplificar u1​u:1
u1​u
Multiplicar fracciones: a⋅cb​=ca⋅b​=u1⋅u​
Eliminar los terminos comunes: u=1
4(u+u1​)u−u2+1=16u
4(u+u1​)u−u2+1=16u
4(u+u1​)u−u2+1=16u
Desarrollar 4(u+u1​)u−u2+1:3u2+5
4(u+u1​)u−u2+1
=4u(u+u1​)−u2+1
Expandir 4u(u+u1​):4u2+4
4u(u+u1​)
Poner los parentesis utilizando: a(b+c)=ab+aca=4u,b=u,c=u1​=4uu+4uu1​
=4uu+4⋅u1​u
Simplificar 4uu+4⋅u1​u:4u2+4
4uu+4⋅u1​u
4uu=4u2
4uu
Aplicar las leyes de los exponentes: ab⋅ac=ab+cuu=u1+1=4u1+1
Sumar: 1+1=2=4u2
4⋅u1​u=4
4⋅u1​u
Multiplicar fracciones: a⋅cb​=ca⋅b​=u1⋅4u​
Eliminar los terminos comunes: u=1⋅4
Multiplicar los numeros: 1⋅4=4=4
=4u2+4
=4u2+4
=4u2+4−u2+1
Simplificar 4u2+4−u2+1:3u2+5
4u2+4−u2+1
Agrupar términos semejantes=4u2−u2+4+1
Sumar elementos similares: 4u2−u2=3u2=3u2+4+1
Sumar: 4+1=5=3u2+5
=3u2+5
3u2+5=16u
Resolver 3u2+5=16u:u=5,u=31​
3u2+5=16u
Desplace 16ua la izquierda
3u2+5=16u
Restar 16u de ambos lados3u2+5−16u=16u−16u
Simplificar3u2+5−16u=0
3u2+5−16u=0
Escribir en la forma binómica ax2+bx+c=03u2−16u+5=0
Resolver con la fórmula general para ecuaciones de segundo grado:
3u2−16u+5=0
Formula general para ecuaciones de segundo grado:
Para a=3,b=−16,c=5u1,2​=2⋅3−(−16)±(−16)2−4⋅3⋅5​​
u1,2​=2⋅3−(−16)±(−16)2−4⋅3⋅5​​
(−16)2−4⋅3⋅5​=14
(−16)2−4⋅3⋅5​
Aplicar las leyes de los exponentes: (−a)n=an,si n es par(−16)2=162=162−4⋅3⋅5​
Multiplicar los numeros: 4⋅3⋅5=60=162−60​
162=256=256−60​
Restar: 256−60=196=196​
Descomponer el número en factores primos: 196=142=142​
Aplicar las leyes de los exponentes: nan​=a142​=14=14
u1,2​=2⋅3−(−16)±14​
Separar las solucionesu1​=2⋅3−(−16)+14​,u2​=2⋅3−(−16)−14​
u=2⋅3−(−16)+14​:5
2⋅3−(−16)+14​
Aplicar la regla −(−a)=a=2⋅316+14​
Sumar: 16+14=30=2⋅330​
Multiplicar los numeros: 2⋅3=6=630​
Dividir: 630​=5=5
u=2⋅3−(−16)−14​:31​
2⋅3−(−16)−14​
Aplicar la regla −(−a)=a=2⋅316−14​
Restar: 16−14=2=2⋅32​
Multiplicar los numeros: 2⋅3=6=62​
Eliminar los terminos comunes: 2=31​
Las soluciones a la ecuación de segundo grado son: u=5,u=31​
u=5,u=31​
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):u=0
Tomar el(los) denominador(es) de 4(u+u−1)−(u−u−1) y comparar con cero
u=0
Los siguientes puntos no están definidosu=0
Combinar los puntos no definidos con las soluciones:
u=5,u=31​
u=5,u=31​
Sustituir hacia atrás la u=ex,resolver para x
Resolver ex=5:x=ln(5)
ex=5
Aplicar las leyes de los exponentes
ex=5
Si f(x)=g(x), entonces ln(f(x))=ln(g(x))ln(ex)=ln(5)
Aplicar las propiedades de los logaritmos: ln(ea)=aln(ex)=xx=ln(5)
x=ln(5)
Resolver ex=31​:x=−ln(3)
ex=31​
Aplicar las leyes de los exponentes
ex=31​
Si f(x)=g(x), entonces ln(f(x))=ln(g(x))ln(ex)=ln(31​)
Aplicar las propiedades de los logaritmos: ln(ea)=aln(ex)=xx=ln(31​)
Simplificar ln(31​):−ln(3)
ln(31​)
Aplicar las propiedades de los logaritmos: loga​(x1​)=−loga​(x)=−ln(3)
x=−ln(3)
x=−ln(3)
x=ln(5),x=−ln(3)
x=ln(5),x=−ln(3)

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

2sin^2(x)+4sin(x)+2=02sin2(x)+4sin(x)+2=02sin(θ)=csc(θ)2sin(θ)=csc(θ)cos(θ)=-0.7cos(θ)=−0.72cos^2(x)+7cos(x)+5=02cos2(x)+7cos(x)+5=02sin(x)=-1,0<= x<2pi2sin(x)=−1,0≤x<2π
Herramientas de estudioSolucionador Matemático de IAAI ChatProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de Chrome
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadService TermsPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024