y=x^2+14x+40
|
y=x^{2}+14x+40
|
f(x)=x^4-x^3-7x^2+x+6
|
f(x)=x^{4}-x^{3}-7x^{2}+x+6
|
y=2|x-3|-1
|
y=2\left|x-3\right|-1
|
y=x
|
y=x
|
y=11-2x
|
y=11-2x
|
f(x)=x^4(x-1)^2
|
f(x)=x^{4}(x-1)^{2}
|
f(x)=sqrt(-2x-5)-4
|
f(x)=\sqrt{-2x-5}-4
|
f(x)=0.3x^2+18x-100
|
f(x)=0.3x^{2}+18x-100
|
f(x)=(x-3)/(x^2-11x+30)
|
f(x)=\frac{x-3}{x^{2}-11x+30}
|
f(x)=x^3sqrt(1-x^2)
|
f(x)=x^{3}\sqrt{1-x^{2}}
|
h(x)=x^3-1
|
h(x)=x^{3}-1
|
y=sqrt(-x+5)
|
y=\sqrt{-x+5}
|
f(x)=-4x^2-12x+16
|
f(x)=-4x^{2}-12x+16
|
g(x)=x^2+5x
|
g(x)=x^{2}+5x
|
slope of-5/8 ,(0, 4/3)
|
slope\:-\frac{5}{8},(0,\frac{4}{3})
|
f(x)=|x+1|-7
|
f(x)=\left|x+1\right|-7
|
y=3x^4(8x-6)
|
y=3x^{4}(8x-6)
|
f(x)=-(2-x)^1(x+4)^2(x-3)^3
|
f(x)=-(2-x)^{1}(x+4)^{2}(x-3)^{3}
|
y=6ln(x)
|
y=6\ln(x)
|
f(t)=16^{t-0.25}
|
f(t)=16^{t-0.25}
|
f(x)=12x^2-216x+665
|
f(x)=12x^{2}-216x+665
|
y=(3x^{-5}+3)^4
|
y=(3x^{-5}+3)^{4}
|
f(x)=(x^2+e^x)/(x^2-x-6)
|
f(x)=\frac{x^{2}+e^{x}}{x^{2}-x-6}
|
f(x)=7x^2-x+1
|
f(x)=7x^{2}-x+1
|
f(t)=e^{1/5 t}
|
f(t)=e^{\frac{1}{5}t}
|
inverse of f(x)=4-ln(x+2)
|
inverse\:f(x)=4-\ln(x+2)
|
f(t)={t:0<t< 1/2 , 1/2 : 1/2 <t<1}
|
f(t)=\left\{t:0<t<\frac{1}{2},\frac{1}{2}:\frac{1}{2}<t<1\right\}
|
f(x)=ln((x^2+1)/(x^2-1))
|
f(x)=\ln(\frac{x^{2}+1}{x^{2}-1})
|
f(x)=5x^2+7x-9
|
f(x)=5x^{2}+7x-9
|
f(x)=sqrt(x(x-2))
|
f(x)=\sqrt{x(x-2)}
|
f(x)=x^6-x^4+4x^3-2x
|
f(x)=x^{6}-x^{4}+4x^{3}-2x
|
y=-e^{x-6}
|
y=-e^{x-6}
|
f(x)= 2/((x-1)^2)
|
f(x)=\frac{2}{(x-1)^{2}}
|
f(x)=32x^2+12x-57
|
f(x)=32x^{2}+12x-57
|
f(x)=x^3(1-x)^4
|
f(x)=x^{3}(1-x)^{4}
|
f(x)=sin(3x^3)
|
f(x)=\sin(3x^{3})
|
extreme points of f(x)=x^4e^x-2
|
extreme\:points\:f(x)=x^{4}e^{x}-2
|
y=sqrt(x)+6
|
y=\sqrt{x}+6
|
f(x)=x^6-3x^3-10
|
f(x)=x^{6}-3x^{3}-10
|
y=sqrt(x-1)+3
|
y=\sqrt{x-1}+3
|
f(x)=x+2cos(x),0<x<2pi
|
f(x)=x+2\cos(x),0<x<2π
|
x+2|x|
|
x+2\left|x\right|
|
f(x)=sqrt(2/(9-x))
|
f(x)=\sqrt{\frac{2}{9-x}}
|
f(x)=(sin(x))/(3x)
|
f(x)=\frac{\sin(x)}{3x}
|
f(x)=3x^3-2x^2+3x-1
|
f(x)=3x^{3}-2x^{2}+3x-1
|
y=3^{x+4}-2
|
y=3^{x+4}-2
|
y=cos(5x-3)
|
y=\cos(5x-3)
|
asymptotes of f(x)=-2/3 csc(2x)
|
asymptotes\:f(x)=-\frac{2}{3}\csc(2x)
|
asymptotes of f(x)=x^4-8x^3
|
asymptotes\:f(x)=x^{4}-8x^{3}
|
f(x)=-3x^2+2x-9
|
f(x)=-3x^{2}+2x-9
|
f(x)=x+6sqrt(x)+8
|
f(x)=x+6\sqrt{x}+8
|
f(x)=(x^2+3)/(x^2-9)
|
f(x)=\frac{x^{2}+3}{x^{2}-9}
|
y=sqrt(7-x)
|
y=\sqrt{7-x}
|
y=(x^3+8)/(x^2+5x+6)
|
y=\frac{x^{3}+8}{x^{2}+5x+6}
|
y=(1/2)^{x-3}+1
|
y=(\frac{1}{2})^{x-3}+1
|
f(x)=10+3sqrt(x)
|
f(x)=10+3\sqrt{x}
|
f(x)=-x^2-x-1
|
f(x)=-x^{2}-x-1
|
f(x)=(x+8)/6
|
f(x)=\frac{x+8}{6}
|
f(m)=m^4-45m^2+100
|
f(m)=m^{4}-45m^{2}+100
|
domain of f(x)=(2x)/(sqrt(x-3))
|
domain\:f(x)=\frac{2x}{\sqrt{x-3}}
|
f(x)=6^x-4
|
f(x)=6^{x}-4
|
y=(2-x)(1-2x)
|
y=(2-x)(1-2x)
|
f(x)=sin(2x)+2sin(5x)+sin(8x)
|
f(x)=\sin(2x)+2\sin(5x)+\sin(8x)
|
f(x)= 1/(sqrt(x^2-25))
|
f(x)=\frac{1}{\sqrt{x^{2}-25}}
|
f(x)=(3x^2+6)/(x^2-2x-3)
|
f(x)=\frac{3x^{2}+6}{x^{2}-2x-3}
|
f(x)=(x+5)(x-3)^2
|
f(x)=(x+5)(x-3)^{2}
|
f(y)=y^2-4y-3
|
f(y)=y^{2}-4y-3
|
f(x)=x^4-3x+1
|
f(x)=x^{4}-3x+1
|
y= 2/3 x^{3/2},0<= x<= 1
|
y=\frac{2}{3}x^{\frac{3}{2}},0\le\:x\le\:1
|
f(x)=3+log_{3}(x+2)
|
f(x)=3+\log_{3}(x+2)
|
intercepts of f(x)=-x^2-9x-20
|
intercepts\:f(x)=-x^{2}-9x-20
|
f(x)=\sqrt[x]{10}
|
f(x)=\sqrt[x]{10}
|
f(x)=5x^3-4x^2-61x-12
|
f(x)=5x^{3}-4x^{2}-61x-12
|
y= 1/(4x^2-4x-3)
|
y=\frac{1}{4x^{2}-4x-3}
|
f(t)=(1-cos(t))/(t^2)
|
f(t)=\frac{1-\cos(t)}{t^{2}}
|
y=xsqrt(x+\sqrt{x+1)}
|
y=x\sqrt{x+\sqrt{x+1}}
|
y= 2/(x^{-8)}
|
y=\frac{2}{x^{-8}}
|
f(x)=sqrt(e^{2x)+e^{-2x}+2}
|
f(x)=\sqrt{e^{2x}+e^{-2x}+2}
|
f(x)=-2x^2-x+7
|
f(x)=-2x^{2}-x+7
|
f(x)=sqrt(2-x)-1
|
f(x)=\sqrt{2-x}-1
|
asymptotes of y=log_{10}(x)
|
asymptotes\:y=\log_{10}(x)
|
F(x)=3x
|
F(x)=3x
|
y=2xsqrt(x^2+1)
|
y=2x\sqrt{x^{2}+1}
|
f(x)=\sqrt[4]{x}-1
|
f(x)=\sqrt[4]{x}-1
|
f(θ)=cos(2θ)dθ
|
f(θ)=\cos(2θ)dθ
|
f(x)=sqrt(1+9x^2)
|
f(x)=\sqrt{1+9x^{2}}
|
y=10(0.8)^x
|
y=10(0.8)^{x}
|
f(x)={2x:-1<= x<1, 2/x :1<= x<4,3:x>= 4}
|
f(x)=\left\{2x:-1\le\:x<1,\frac{2}{x}:1\le\:x<4,3:x\ge\:4\right\}
|
f(x)=(ln(x^2+6x+6))/(2x+6)
|
f(x)=\frac{\ln(x^{2}+6x+6)}{2x+6}
|
f(x)=e^x(x)
|
f(x)=e^{x}(x)
|
y=-x^2-5x
|
y=-x^{2}-5x
|
domain of f(x)=ln(9-x^2)
|
domain\:f(x)=\ln(9-x^{2})
|
f(x)=|x-2|+|x+2|
|
f(x)=\left|x-2\right|+\left|x+2\right|
|
f(x)= x/((1+|x|))
|
f(x)=\frac{x}{(1+\left|x\right|)}
|
f(x)=4x^3-5x^2+3x-1
|
f(x)=4x^{3}-5x^{2}+3x-1
|
f(x)=e^1
|
f(x)=e^{1}
|
f(t)=81^{0.5t^2+t}
|
f(t)=81^{0.5t^{2}+t}
|
f(x)=2sin(8)(x-pi/4)
|
f(x)=2\sin(8)(x-\frac{π}{4})
|
f(x)=-5x^2+3
|
f(x)=-5x^{2}+3
|
y=2x^2-3x-4
|
y=2x^{2}-3x-4
|