Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
slope ofintercept y=3x-5
slopeintercept\:y=3x-5
inverse of f(x)= 8/(\sqrt[3]{x+4)}
inverse\:f(x)=\frac{8}{\sqrt[3]{x+4}}
inverse of f(x)=-2x+5
inverse\:f(x)=-2x+5
inverse of f(x)=(x+2)^2+1
inverse\:f(x)=(x+2)^{2}+1
slope ofintercept-1/3
slopeintercept\:-\frac{1}{3}
inverse of f(x)=(x-1)/(2-3x)
inverse\:f(x)=\frac{x-1}{2-3x}
slope ofintercept y-4x=8
slopeintercept\:y-4x=8
symmetry y=-2(x-3)^2+5
symmetry\:y=-2(x-3)^{2}+5
simplify (-3.4)(0.7)
simplify\:(-3.4)(0.7)
slope ofintercept 5x-8y=-17
slopeintercept\:5x-8y=-17
monotone f(x)=x^2-6x
monotone\:f(x)=x^{2}-6x
domain of f(x)=(sqrt(9x+12))/3
domain\:f(x)=\frac{\sqrt{9x+12}}{3}
asymptotes of f(x)=(4x^2+x-9)/(x^2+1)
asymptotes\:f(x)=\frac{4x^{2}+x-9}{x^{2}+1}
inverse of f(x)=(2-4x)/(16x-1)
inverse\:f(x)=\frac{2-4x}{16x-1}
slope ofintercept 12x-3y=-3
slopeintercept\:12x-3y=-3
domain of f(x)=sqrt((x-4)/(x-2))
domain\:f(x)=\sqrt{\frac{x-4}{x-2}}
inverse of f(x)=x^3+11
inverse\:f(x)=x^{3}+11
domain of f(x)=1+(6+x)^{1/2}
domain\:f(x)=1+(6+x)^{\frac{1}{2}}
domain of (sin(x))/(1+cos(x))
domain\:\frac{\sin(x)}{1+\cos(x)}
inverse of 4/3 pix^3
inverse\:\frac{4}{3}πx^{3}
intercepts of f(x)=5x^2+2
intercepts\:f(x)=5x^{2}+2
periodicity of 0.9cos(0.5)(x+pi/(10))
periodicity\:0.9\cos(0.5)(x+\frac{π}{10})
monotone x^4-x^2+2x
monotone\:x^{4}-x^{2}+2x
domain of xe^{1/x}
domain\:xe^{\frac{1}{x}}
asymptotes of f(x)=(x^2-2x-3)/(x+4)
asymptotes\:f(x)=\frac{x^{2}-2x-3}{x+4}
inverse of y=-3x-9
inverse\:y=-3x-9
monotone f(x)=7-6e^{-x}
monotone\:f(x)=7-6e^{-x}
parallel y=-4x-8,(1,3)
parallel\:y=-4x-8,(1,3)
range of f(x)= 1/(sqrt(4-x^2))
range\:f(x)=\frac{1}{\sqrt{4-x^{2}}}
intercepts of 3x^{2/3}-2x
intercepts\:3x^{\frac{2}{3}}-2x
inverse of f(x)=-1+x^3
inverse\:f(x)=-1+x^{3}
inverse of f(x)=sqrt(x)+5
inverse\:f(x)=\sqrt{x}+5
intercepts of x^2(x-5)(x^2+3)
intercepts\:x^{2}(x-5)(x^{2}+3)
midpoint (-2,-6),(2,-11)
midpoint\:(-2,-6),(2,-11)
domain of (x-3)/(2x^2)
domain\:\frac{x-3}{2x^{2}}
shift y=2sin(6x-pi)
shift\:y=2\sin(6x-π)
symmetry y=-5(x-1)2+4
symmetry\:y=-5(x-1)2+4
inverse of f(x)= 4/3 x+1
inverse\:f(x)=\frac{4}{3}x+1
inverse of f(x)=((x+4))/(x-2)
inverse\:f(x)=\frac{(x+4)}{x-2}
shift f(x)=-3sin(x-pi/4)+2
shift\:f(x)=-3\sin(x-\frac{π}{4})+2
symmetry y=2(x-4)^2+3
symmetry\:y=2(x-4)^{2}+3
inverse of f(x)= x/7
inverse\:f(x)=\frac{x}{7}
domain of f(x)=(5x+20)/(x^2-16)
domain\:f(x)=\frac{5x+20}{x^{2}-16}
asymptotes of f(x)=(x-3)/(x^2+1)
asymptotes\:f(x)=\frac{x-3}{x^{2}+1}
line (-3,1),(1,-2)
line\:(-3,1),(1,-2)
line (2,0),(0,3)
line\:(2,0),(0,3)
range of x^3+3x^2+2x+1
range\:x^{3}+3x^{2}+2x+1
inverse of f(x)=(2x+5)/6
inverse\:f(x)=\frac{2x+5}{6}
inverse of f(x)=x+5
inverse\:f(x)=x+5
intercepts of f(x)=(x^2)/4
intercepts\:f(x)=\frac{x^{2}}{4}
inflection (x+1)/(x+2)
inflection\:\frac{x+1}{x+2}
extreme f(x)=x^4-50x^2+625
extreme\:f(x)=x^{4}-50x^{2}+625
domain of 12x+2
domain\:12x+2
inverse of f(x)=2+sqrt(x-1)
inverse\:f(x)=2+\sqrt{x-1}
inverse of f(x)=sec(x+2)
inverse\:f(x)=\sec(x+2)
asymptotes of y=(2x-1)/(x+2)
asymptotes\:y=\frac{2x-1}{x+2}
amplitude of y=-1/5 cos(2pix)+5
amplitude\:y=-\frac{1}{5}\cos(2πx)+5
domain of f(x)=3x^2+x+5
domain\:f(x)=3x^{2}+x+5
inverse of (x-4)/(x+2)
inverse\:\frac{x-4}{x+2}
symmetry y=-7x
symmetry\:y=-7x
extreme f(x)=2+3/(1+(x+1)^2)
extreme\:f(x)=2+\frac{3}{1+(x+1)^{2}}
line y=-3x
line\:y=-3x
critical-3x^2+12x
critical\:-3x^{2}+12x
asymptotes of f(x)=(x-3)/(x+1)
asymptotes\:f(x)=\frac{x-3}{x+1}
parity 1/(a^{1/n)}
parity\:\frac{1}{a^{\frac{1}{n}}}
extreme tan^2(x)
extreme\:\tan^{2}(x)
periodicity of e^{sqrt(2)cos(x)}
periodicity\:e^{\sqrt{2}\cos(x)}
domain of f(x)= 4/(ln(x^2-1))
domain\:f(x)=\frac{4}{\ln(x^{2}-1)}
asymptotes of f(x)=(x^3+1)/(x^2+2)
asymptotes\:f(x)=\frac{x^{3}+1}{x^{2}+2}
distance (3,2),(-10,4)
distance\:(3,2),(-10,4)
inverse of f(x)=(x+2)/(x-1)
inverse\:f(x)=\frac{x+2}{x-1}
slope ofintercept-x+2y=6
slopeintercept\:-x+2y=6
asymptotes of f(x)=(-3x^2-12x)/(5x^2)
asymptotes\:f(x)=\frac{-3x^{2}-12x}{5x^{2}}
extreme f(x)=4x^3-80x^2+400x
extreme\:f(x)=4x^{3}-80x^{2}+400x
extreme f(x)= 1/(x^2-1)
extreme\:f(x)=\frac{1}{x^{2}-1}
extreme f(x)=-((x-5))/(e^x)
extreme\:f(x)=-\frac{(x-5)}{e^{x}}
inverse of y=x
inverse\:y=x
domain of f(x)=(x^2+x)/x
domain\:f(x)=\frac{x^{2}+x}{x}
extreme (4-x^2)/(x^2)
extreme\:\frac{4-x^{2}}{x^{2}}
parity f(x)=x^6+x
parity\:f(x)=x^{6}+x
slope ofintercept 2x-3y=-1
slopeintercept\:2x-3y=-1
vertices h(t)=4t^2
vertices\:h(t)=4t^{2}
extreme f(x)=19x^4-114x^2
extreme\:f(x)=19x^{4}-114x^{2}
inverse of f(x)=(3+4x)/(3x)
inverse\:f(x)=\frac{3+4x}{3x}
intercepts of f(x)=(x+3)^2
intercepts\:f(x)=(x+3)^{2}
domain of f(x)= 5/(sqrt(x+9))
domain\:f(x)=\frac{5}{\sqrt{x+9}}
slope of 3x+y=9
slope\:3x+y=9
domain of f(x)=-\sqrt[3]{4x}
domain\:f(x)=-\sqrt[3]{4x}
inverse of f(x)=7x^3+8
inverse\:f(x)=7x^{3}+8
intercepts of-x^2+10x-21
intercepts\:-x^{2}+10x-21
midpoint (-6,-2),(3,-8)
midpoint\:(-6,-2),(3,-8)
critical 3x^2-18x+15
critical\:3x^{2}-18x+15
asymptotes of f(x)=(12x^2)/(4x^2+1)
asymptotes\:f(x)=\frac{12x^{2}}{4x^{2}+1}
inverse of f(x)=(x+1)/(x-1)
inverse\:f(x)=\frac{x+1}{x-1}
domain of sqrt(5-x)
domain\:\sqrt{5-x}
inverse of f(x)=\sqrt[3]{4-y}+2
inverse\:f(x)=\sqrt[3]{4-y}+2
domain of 1/((x-2)^2)
domain\:\frac{1}{(x-2)^{2}}
inverse of (x^2+x+1)/x
inverse\:\frac{x^{2}+x+1}{x}
distance (0,-1),(-5,-2)
distance\:(0,-1),(-5,-2)
amplitude of f(x)=3sin(4x)
amplitude\:f(x)=3\sin(4x)
1
..
283
284
285
286
287
..
1324