f(x)=-x^2-8x-21
|
f(x)=-x^{2}-8x-21
|
f(x)=-x^2-8x-15
|
f(x)=-x^{2}-8x-15
|
h(x)=3x+1
|
h(x)=3x+1
|
f(x)=-2x^2+x-5
|
f(x)=-2x^{2}+x-5
|
f(x)=x^{6/5}-12x^{1/5}
|
f(x)=x^{\frac{6}{5}}-12x^{\frac{1}{5}}
|
f(x)=-1+cos(x)
|
f(x)=-1+\cos(x)
|
f(x)=sqrt(\sqrt{x-6)-6}
|
f(x)=\sqrt{\sqrt{x-6}-6}
|
h(x)=(x^2+4x)^2
|
h(x)=(x^{2}+4x)^{2}
|
y=-1/(x+1)
|
y=-\frac{1}{x+1}
|
f(x)=(3x^4)/((1+2x)^2)
|
f(x)=\frac{3x^{4}}{(1+2x)^{2}}
|
domain of f(x)= 3/(sqrt(x-8))
|
domain\:f(x)=\frac{3}{\sqrt{x-8}}
|
extreme points of f(x)=129x-0.5x^4+900
|
extreme\:points\:f(x)=129x-0.5x^{4}+900
|
y=9^{2x}
|
y=9^{2x}
|
f(x)=x^2-9x+22
|
f(x)=x^{2}-9x+22
|
f(z)=z^2-z-1
|
f(z)=z^{2}-z-1
|
f(x)=(-x+1)/(3x+6)
|
f(x)=\frac{-x+1}{3x+6}
|
f(x)=log_{2}(x+4)+8
|
f(x)=\log_{2}(x+4)+8
|
f(x)=x^{1/3}+x^{2/3}
|
f(x)=x^{\frac{1}{3}}+x^{\frac{2}{3}}
|
y=2sin(x+pi/2)
|
y=2\sin(x+\frac{π}{2})
|
f(α)= 1/(sec(α)-tan(α))
|
f(α)=\frac{1}{\sec(α)-\tan(α)}
|
f(x)=cos(x)cos(8x)
|
f(x)=\cos(x)\cos(8x)
|
y=-x^2+7x
|
y=-x^{2}+7x
|
domain of f(x)=(8x)/(9x-1)
|
domain\:f(x)=\frac{8x}{9x-1}
|
f(x)=sin(3x-5)
|
f(x)=\sin(3x-5)
|
f(x)=(x-4)/(sqrt(x-2))
|
f(x)=\frac{x-4}{\sqrt{x-2}}
|
f(x)=sin(3x)dx
|
f(x)=\sin(3x)dx
|
y=(2x-2)/(-x+4)
|
y=\frac{2x-2}{-x+4}
|
f(x)=-sqrt(x^2+4)
|
f(x)=-\sqrt{x^{2}+4}
|
y=arctan((a+x)/(1-ax))
|
y=\arctan(\frac{a+x}{1-ax})
|
f(x)=-4cos(x)+6
|
f(x)=-4\cos(x)+6
|
f(x)=(-3)/(x+2)
|
f(x)=\frac{-3}{x+2}
|
f(x)= 2/(sqrt(-x^2+4x+5))
|
f(x)=\frac{2}{\sqrt{-x^{2}+4x+5}}
|
f(x)=(2x+1)^3(3-2x)^2
|
f(x)=(2x+1)^{3}(3-2x)^{2}
|
line (2,5),(-5,-4)
|
line\:(2,5),(-5,-4)
|
f(x)=ln(1+x^4)
|
f(x)=\ln(1+x^{4})
|
f(x)=2e^{5x}
|
f(x)=2e^{5x}
|
f(x)=13-x^2
|
f(x)=13-x^{2}
|
f(x)=0.5^{3x-2}
|
f(x)=0.5^{3x-2}
|
g(x)=-x^2+9
|
g(x)=-x^{2}+9
|
f(x)=(x^2-12x+20)/(3x)
|
f(x)=\frac{x^{2}-12x+20}{3x}
|
y=(2x-x^3)/(sqrt(x^4-1))
|
y=\frac{2x-x^{3}}{\sqrt{x^{4}-1}}
|
f(x)=(2x+2)/(x^2-x-2)
|
f(x)=\frac{2x+2}{x^{2}-x-2}
|
f(x)=(2x)/(x^2-3x+2)
|
f(x)=\frac{2x}{x^{2}-3x+2}
|
y=x^3-6x^2+9x+5
|
y=x^{3}-6x^{2}+9x+5
|
line (0,(pi)/2),(pi,-(pi)/2)
|
line\:(0,\frac{\pi}{2}),(\pi,-\frac{\pi}{2})
|
y=0.5x+5
|
y=0.5x+5
|
f(x)=e^{ln(x^3cos(2x))}
|
f(x)=e^{\ln(x^{3}\cos(2x))}
|
f(x)=-(3/2)x+6
|
f(x)=-(\frac{3}{2})x+6
|
f(x)=(log_{10}(x-2))/(sqrt(18-2x))
|
f(x)=\frac{\log_{10}(x-2)}{\sqrt{18-2x}}
|
f(x)=(1-(3/x))^x
|
f(x)=(1-(\frac{3}{x}))^{x}
|
f(x)=(x^3)/3-425x^2+150000x-5000
|
f(x)=\frac{x^{3}}{3}-425x^{2}+150000x-5000
|
y=-(x-1)^2+5
|
y=-(x-1)^{2}+5
|
y=-(x-1)^2-2
|
y=-(x-1)^{2}-2
|
f(x)=sin(2x)+2sin(x)
|
f(x)=\sin(2x)+2\sin(x)
|
f(x)=9^{x+1}
|
f(x)=9^{x+1}
|
domain of (\sqrt[4]{x})^5
|
domain\:(\sqrt[4]{x})^{5}
|
y=2x^2-7x+5
|
y=2x^{2}-7x+5
|
f(x)=x^4-3x^2+3
|
f(x)=x^{4}-3x^{2}+3
|
f(x)=-3x^2+5x-6
|
f(x)=-3x^{2}+5x-6
|
f(x)=-3x^2+5x-2
|
f(x)=-3x^{2}+5x-2
|
f(x)=(x+4)/(x^2-4)
|
f(x)=\frac{x+4}{x^{2}-4}
|
f(x)=3-sqrt(4-x)
|
f(x)=3-\sqrt{4-x}
|
f(x)=(x^2-3x-2)/(2x)
|
f(x)=\frac{x^{2}-3x-2}{2x}
|
f(x)=-x^2+60x-800
|
f(x)=-x^{2}+60x-800
|
parity ln(cos(x))tan(x)dx
|
parity\:\ln(\cos(x))\tan(x)dx
|
f(z)=z^2+6z+4
|
f(z)=z^{2}+6z+4
|
f(x)=5(x^4-x)^7
|
f(x)=5(x^{4}-x)^{7}
|
f(x)=(sin(x))/(x-pi)
|
f(x)=\frac{\sin(x)}{x-π}
|
f(n)=5^{2n-3}-5^{2n-1}+25^{n-1}
|
f(n)=5^{2n-3}-5^{2n-1}+25^{n-1}
|
y=tan(x+1)
|
y=\tan(x+1)
|
f(x)=ln(5x+2)
|
f(x)=\ln(5x+2)
|
y=75x
|
y=75x
|
f(x)=(1/2)^0
|
f(x)=(\frac{1}{2})^{0}
|
f(x)= 4/(-x-4)
|
f(x)=\frac{4}{-x-4}
|
f(x)=-2x
|
f(x)=-2x
|
f(x)= 1/4 x^8-x^4
|
f(x)=\frac{1}{4}x^{8}-x^{4}
|
f(x)=-1(x-5)^3
|
f(x)=-1(x-5)^{3}
|
f(x)={2-x:x>= 0,x+3:x<0}
|
f(x)=\left\{2-x:x\ge\:0,x+3:x<0\right\}
|
f(x)=-4x^2-3x+2
|
f(x)=-4x^{2}-3x+2
|
y=5x^2+2x-1
|
y=5x^{2}+2x-1
|
g(x)=x^{4/3}
|
g(x)=x^{\frac{4}{3}}
|
f(x)=x^2+10x^4
|
f(x)=x^{2}+10x^{4}
|
y=5x+sin(x)
|
y=5x+\sin(x)
|
y=-5/4 x^3
|
y=-\frac{5}{4}x^{3}
|
f(x)=ln|x-2|
|
f(x)=\ln\left|x-2\right|
|
line (7,4)(-3,-3)
|
line\:(7,4)(-3,-3)
|
f(x)=sqrt(-x-2-2)
|
f(x)=\sqrt{-x-2-2}
|
y= 1/((x-2)^2)
|
y=\frac{1}{(x-2)^{2}}
|
f(x)=sqrt(2+2cos(2x))
|
f(x)=\sqrt{2+2\cos(2x)}
|
f(x)=sqrt(x^2+x+2)
|
f(x)=\sqrt{x^{2}+x+2}
|
f(θ)=(1+sin(θ)+cos(θ))/(1+sin(θ)-cos(θ))
|
f(θ)=\frac{1+\sin(θ)+\cos(θ)}{1+\sin(θ)-\cos(θ)}
|
f(x)=x^4-7x+8
|
f(x)=x^{4}-7x+8
|
y=3*(3/5)^{x+2}-4
|
y=3\cdot\:(\frac{3}{5})^{x+2}-4
|
p(x)=sqrt(-x^2+100)
|
p(x)=\sqrt{-x^{2}+100}
|
f(x)=-2x^2-20x-47
|
f(x)=-2x^{2}-20x-47
|
f(k)=sin(kpi)
|
f(k)=\sin(kπ)
|
slope of 8
|
slope\:8
|
f(x)=2.75^{(x/5)}-15
|
f(x)=2.75^{(\frac{x}{5})}-15
|
f(x)=(x^2+x)/(x^3+4)
|
f(x)=\frac{x^{2}+x}{x^{3}+4}
|
f(x)=x^4-4x^3-8x^2+5
|
f(x)=x^{4}-4x^{3}-8x^{2}+5
|