f(x)=5x+25
|
f(x)=5x+25
|
y=x+sqrt(x)
|
y=x+\sqrt{x}
|
f(x)=(ln(x))^2-9
|
f(x)=(\ln(x))^{2}-9
|
y(X)=X^2
|
y(X)=X^{2}
|
f(x)=(1+sin(x))/(xcosh(x))
|
f(x)=\frac{1+\sin(x)}{x\cosh(x)}
|
perpendicular y=1-2x,\at (1,3)
|
perpendicular\:y=1-2x,\at\:(1,3)
|
y=2e^x+2
|
y=2e^{x}+2
|
y=(1-2x)/(x-2)
|
y=\frac{1-2x}{x-2}
|
f(y)=y^2+8y+8
|
f(y)=y^{2}+8y+8
|
f(y)=y^2+8y+3
|
f(y)=y^{2}+8y+3
|
g(x)=2x^2-6
|
g(x)=2x^{2}-6
|
g(x)=2x^2-3
|
g(x)=2x^{2}-3
|
f(x)=picos^2(3x-2)
|
f(x)=π\cos^{2}(3x-2)
|
y=ln(2x)-7/(e^{4x)}
|
y=\ln(2x)-\frac{7}{e^{4x}}
|
f(x)=3x^2+8x-9
|
f(x)=3x^{2}+8x-9
|
f(x)=e^{2x}-e^x-12
|
f(x)=e^{2x}-e^{x}-12
|
inverse of f(x)=12x+4
|
inverse\:f(x)=12x+4
|
f(x)=\sqrt[3]{2x+9}
|
f(x)=\sqrt[3]{2x+9}
|
y=2sin(x)-1
|
y=2\sin(x)-1
|
y=cot(x-pi/4)
|
y=\cot(x-\frac{π}{4})
|
f(x)=4+sin(x)
|
f(x)=4+\sin(x)
|
f(x)=x^2sqrt(x)
|
f(x)=x^{2}\sqrt{x}
|
f(x)=x^3-2x^2+3x
|
f(x)=x^{3}-2x^{2}+3x
|
f(x)=(2x-x^3)/(sqrt(x^4-1))
|
f(x)=\frac{2x-x^{3}}{\sqrt{x^{4}-1}}
|
f(x)=ln|x+1|
|
f(x)=\ln\left|x+1\right|
|
f(x)=4(x^2-2)^3
|
f(x)=4(x^{2}-2)^{3}
|
f(x)=(sin(x)-1)/(cos(x)+1)
|
f(x)=\frac{\sin(x)-1}{\cos(x)+1}
|
domain of f(x)=5+(6+x)^{1/2}
|
domain\:f(x)=5+(6+x)^{\frac{1}{2}}
|
f(x)=-5+2x
|
f(x)=-5+2x
|
y=1-sin(x)
|
y=1-\sin(x)
|
f(x)=-x^2+20x+100
|
f(x)=-x^{2}+20x+100
|
f(x)=3x^4-10x^3-12x^2+10x+9
|
f(x)=3x^{4}-10x^{3}-12x^{2}+10x+9
|
y=-3x^2+12x-33
|
y=-3x^{2}+12x-33
|
f(x)=(10)/(-3x-3)
|
f(x)=\frac{10}{-3x-3}
|
y=2sin(x-pi)
|
y=2\sin(x-π)
|
f(x)=sqrt(x^2+2x+5)
|
f(x)=\sqrt{x^{2}+2x+5}
|
f(x)=1-(x-2)^{4/5}
|
f(x)=1-(x-2)^{\frac{4}{5}}
|
y=|x+1|+1
|
y=\left|x+1\right|+1
|
periodicity of y=-1+3cos(2x)
|
periodicity\:y=-1+3\cos(2x)
|
y= x/(x^2-2x+1)
|
y=\frac{x}{x^{2}-2x+1}
|
f(x)=3x^4-4x^3-12x^2+12
|
f(x)=3x^{4}-4x^{3}-12x^{2}+12
|
f(x)=xsin(x)dx
|
f(x)=x\sin(x)dx
|
y=-2-x
|
y=-2-x
|
y(θ)=sin(θ)(1+cos(θ))
|
y(θ)=\sin(θ)(1+\cos(θ))
|
y=e^{-x}-3
|
y=e^{-x}-3
|
y=(x-3)2+1
|
y=(x-3)2+1
|
y=3tan(x^2-5)
|
y=3\tan(x^{2}-5)
|
f(t)=-2t^2+3t-6
|
f(t)=-2t^{2}+3t-6
|
inverse of (49)/(x^2)
|
inverse\:\frac{49}{x^{2}}
|
f(x)=2-4x-3x^2
|
f(x)=2-4x-3x^{2}
|
f(x)=x^2sqrt(5-x)
|
f(x)=x^{2}\sqrt{5-x}
|
f(x)=|x+1|-|x-1|
|
f(x)=\left|x+1\right|-\left|x-1\right|
|
f(x)=(3+\sqrt[4]{x-2})/5
|
f(x)=\frac{3+\sqrt[4]{x-2}}{5}
|
f(x)=(3(3-x)(x-1))/((x+1)(x-2))
|
f(x)=\frac{3(3-x)(x-1)}{(x+1)(x-2)}
|
f(x)=-2x^2-3x+6
|
f(x)=-2x^{2}-3x+6
|
y=3x^2+2x-3
|
y=3x^{2}+2x-3
|
y= 3/(x^2+2)
|
y=\frac{3}{x^{2}+2}
|
y= 5/4 x^2
|
y=\frac{5}{4}x^{2}
|
f(x)=x^2-2x^3
|
f(x)=x^{2}-2x^{3}
|
parallel 5x-y=4
|
parallel\:5x-y=4
|
f(x)=(5x-2)/(x^2+1)
|
f(x)=\frac{5x-2}{x^{2}+1}
|
f(x)=(x^2-4)^3
|
f(x)=(x^{2}-4)^{3}
|
y= 1/x-3sin(x)
|
y=\frac{1}{x}-3\sin(x)
|
f(x)=sqrt(81-64x^2)
|
f(x)=\sqrt{81-64x^{2}}
|
f(x)=(sqrt(x^2-4))/(x^2+2x-15)
|
f(x)=\frac{\sqrt{x^{2}-4}}{x^{2}+2x-15}
|
f(x)=(-2)/((x+3)^2)
|
f(x)=\frac{-2}{(x+3)^{2}}
|
f(x)=4x^2-10x+7
|
f(x)=4x^{2}-10x+7
|
f(x)=(x^3)/(x^2)
|
f(x)=\frac{x^{3}}{x^{2}}
|
f(x)=4x^2-24x+1
|
f(x)=4x^{2}-24x+1
|
distance (3,3)(-2,-1)
|
distance\:(3,3)(-2,-1)
|
f(x)=cos^4(5x)
|
f(x)=\cos^{4}(5x)
|
f(x)=\sqrt[4]{2x-1}
|
f(x)=\sqrt[4]{2x-1}
|
f(x)=x^3-9x^2+15x-3
|
f(x)=x^{3}-9x^{2}+15x-3
|
f(x)=x^3+3x^2+2x+1
|
f(x)=x^{3}+3x^{2}+2x+1
|
f(a)=(2a^4-3a^2+a-1)/(a^3)
|
f(a)=\frac{2a^{4}-3a^{2}+a-1}{a^{3}}
|
f(x)=(sqrt(x+2))/(x^2-9)
|
f(x)=\frac{\sqrt{x+2}}{x^{2}-9}
|
f(x)=-sin(x)tan(x)
|
f(x)=-\sin(x)\tan(x)
|
h(x)=6x^3+43x^2+6x-7
|
h(x)=6x^{3}+43x^{2}+6x-7
|
f(p)=-4p^2+172p-1528
|
f(p)=-4p^{2}+172p-1528
|
f(x)=sqrt(6-x)+\sqrt[4]{x-2}
|
f(x)=\sqrt{6-x}+\sqrt[4]{x-2}
|
f(x)=e^{-x^2}-x+sin(x)cos(x)
|
f(x)=e^{-x^{2}}-x+\sin(x)\cos(x)
|
f(x)=x-3+x^2+x-1+7
|
f(x)=x-3+x^{2}+x-1+7
|
f(x)= x/(8-x^3)
|
f(x)=\frac{x}{8-x^{3}}
|
f(x)=(3x^2+5)/(2x^3)
|
f(x)=\frac{3x^{2}+5}{2x^{3}}
|
f(x)=-|x-6|+4
|
f(x)=-\left|x-6\right|+4
|
f(x)=-3.1(x-1.8)^2+2.3
|
f(x)=-3.1(x-1.8)^{2}+2.3
|
f(x)= 2/3 x-12
|
f(x)=\frac{2}{3}x-12
|
f(t)=3t^3
|
f(t)=3t^{3}
|
y=x^3-4x^2+3x
|
y=x^{3}-4x^{2}+3x
|
y= 3/(4x+8)
|
y=\frac{3}{4x+8}
|
inverse of f(x)=x^2-3,x<= 0
|
inverse\:f(x)=x^{2}-3,x\le\:0
|
inverse of (ln(x))^3
|
inverse\:(\ln(x))^{3}
|
f(x)=sqrt((3-x)/(|2x-5|))
|
f(x)=\sqrt{\frac{3-x}{\left|2x-5\right|}}
|
f(x)= 5/(x^2+8x+15)
|
f(x)=\frac{5}{x^{2}+8x+15}
|
y=4x^2-2x+4
|
y=4x^{2}-2x+4
|
y=-3cos(2)(x-pi/6)
|
y=-3\cos(2)(x-\frac{π}{6})
|
g(t)=(t+1/t)(5t^2-1/(t^2))
|
g(t)=(t+\frac{1}{t})(5t^{2}-\frac{1}{t^{2}})
|
f(x)=(x^2-9x+18)/(x+3)
|
f(x)=\frac{x^{2}-9x+18}{x+3}
|
f(x)=x^2-16x+164
|
f(x)=x^{2}-16x+164
|
f(x)=3x^3+3x^2-18x
|
f(x)=3x^{3}+3x^{2}-18x
|