inverse of y=(4x-7)/(2x+3)
|
inverse\:y=\frac{4x-7}{2x+3}
|
inverse of f(x)= 2/x+x
|
inverse\:f(x)=\frac{2}{x}+x
|
inverse of f(x)= 2/(sqrt(pi))
|
inverse\:f(x)=\frac{2}{\sqrt{π}}
|
inverse of g(x)= 1/(x-1)f(x)=(x+1)/1
|
inverse\:g(x)=\frac{1}{x-1}f(x)=\frac{x+1}{1}
|
inverse of f(x)=(\sqrt[3]{6^x})/5
|
inverse\:f(x)=\frac{\sqrt[3]{6^{x}}}{5}
|
asymptotes of f(x)=(x^2)/(x^2-9)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{2}-9}
|
inverse of 1/a
|
inverse\:\frac{1}{a}
|
inverse of (x-4)^2+3
|
inverse\:(x-4)^{2}+3
|
inverse of f(x)=8x^2-4
|
inverse\:f(x)=8x^{2}-4
|
inverse of (x-4)^2+7
|
inverse\:(x-4)^{2}+7
|
inverse of f(x)=(9x+6)/(x+8)
|
inverse\:f(x)=\frac{9x+6}{x+8}
|
inverse of f(x)=-4(x-2)^2+6
|
inverse\:f(x)=-4(x-2)^{2}+6
|
inverse of f(x)=(9x+27)/(x-12)
|
inverse\:f(x)=\frac{9x+27}{x-12}
|
inverse of f(x)=x^2-4x+5,x>= 2
|
inverse\:f(x)=x^{2}-4x+5,x\ge\:2
|
inverse of 7x^2-8
|
inverse\:7x^{2}-8
|
inverse of f(x)=(2x-4)^2
|
inverse\:f(x)=(2x-4)^{2}
|
shift-2sin(-3x+(pi)/2)
|
shift\:-2\sin(-3x+\frac{\pi}{2})
|
inverse of (1e^-(2s))/((s^2-s))
|
inverse\:\frac{1e^{-}(2s)}{(s^{2}-s)}
|
inverse of 7x^2-2
|
inverse\:7x^{2}-2
|
inverse of f(x)=-5sqrt(x-5),x>= 5
|
inverse\:f(x)=-5\sqrt{x-5},x\ge\:5
|
inverse of (8x-3)/x
|
inverse\:\frac{8x-3}{x}
|
inverse of f(x)= 2/(x-1)-1
|
inverse\:f(x)=\frac{2}{x-1}-1
|
inverse of 2/(s^2+2s-13)
|
inverse\:\frac{2}{s^{2}+2s-13}
|
inverse of (x+8)/3
|
inverse\:\frac{x+8}{3}
|
inverse of f(x)=14+3sqrt(x)
|
inverse\:f(x)=14+3\sqrt{x}
|
inverse of f(x)=(-5-8x)/(7x+8)
|
inverse\:f(x)=\frac{-5-8x}{7x+8}
|
asymptotes of f(x)=(6x+12)/(x+2)
|
asymptotes\:f(x)=\frac{6x+12}{x+2}
|
inverse of 7x^2-2,x>= 0
|
inverse\:7x^{2}-2,x\ge\:0
|
inverse of f(x)=sqrt((3x-1)/(2x-1))
|
inverse\:f(x)=\sqrt{\frac{3x-1}{2x-1}}
|
inverse of (x-6)(x-8)
|
inverse\:(x-6)(x-8)
|
inverse of f(x)=(4x-2)/(x+7)
|
inverse\:f(x)=\frac{4x-2}{x+7}
|
inverse of (-x+1)/(5+7x)
|
inverse\:\frac{-x+1}{5+7x}
|
inverse of 1-e^{-y}
|
inverse\:1-e^{-y}
|
inverse of f(x)=3-12x
|
inverse\:f(x)=3-12x
|
inverse of 4+sqrt(x^2+8)
|
inverse\:4+\sqrt{x^{2}+8}
|
inverse of f(x)=(x+3)^2+4/x <=-3
|
inverse\:f(x)=(x+3)^{2}+\frac{4}{x}\le\:-3
|
inverse of f(x)=(4x-3)/(x+2)
|
inverse\:f(x)=\frac{4x-3}{x+2}
|
inverse of (f(x)x)=2x+24
|
inverse\:(f(x)x)=2x+24
|
inverse of f(x)=sqrt(x+1),0<= x<= 8
|
inverse\:f(x)=\sqrt{x+1},0\le\:x\le\:8
|
inverse of arcsin(5/3)
|
inverse\:\arcsin(\frac{5}{3})
|
inverse of f(x)=-1/4 x+3/4
|
inverse\:f(x)=-\frac{1}{4}x+\frac{3}{4}
|
inverse of f(x)=(5x)/(4x-1)
|
inverse\:f(x)=\frac{5x}{4x-1}
|
inverse of (5+13x)/2
|
inverse\:\frac{5+13x}{2}
|
inverse of f(x)=(8-x)/4
|
inverse\:f(x)=\frac{8-x}{4}
|
inverse of f(x)=\sqrt[3]{5-x}+6
|
inverse\:f(x)=\sqrt[3]{5-x}+6
|
inverse of (3x-5)/(x+1)
|
inverse\:\frac{3x-5}{x+1}
|
inverse of y=5x-10
|
inverse\:y=5x-10
|
inverse of f(x)=sqrt(-8x-4)
|
inverse\:f(x)=\sqrt{-8x-4}
|
inverse of f(x)=y=e^x+3
|
inverse\:f(x)=y=e^{x}+3
|
inverse of y=-0.25x+20
|
inverse\:y=-0.25x+20
|
inverse of g(x)= 1/2 x-2
|
inverse\:g(x)=\frac{1}{2}x-2
|
inverse of h(x)=(-15x-1)^2
|
inverse\:h(x)=(-15x-1)^{2}
|
inverse of f(x)=2(x-5)2
|
inverse\:f(x)=2(x-5)2
|
inverse of f(x)=-2/(x^2-1)
|
inverse\:f(x)=-\frac{2}{x^{2}-1}
|
inverse of ((s+1))/(s^2+2s+10)
|
inverse\:\frac{(s+1)}{s^{2}+2s+10}
|
inverse of f(-1)=(3-2x)/(2x-5)
|
inverse\:f(-1)=\frac{3-2x}{2x-5}
|
inverse of f(x)=3*+1
|
inverse\:f(x)=3\cdot\:+1
|
extreme points of x^4-32x^2+256
|
extreme\:points\:x^{4}-32x^{2}+256
|
inverse of f(x)=\sqrt[3]{x-6}+5
|
inverse\:f(x)=\sqrt[3]{x-6}+5
|
inverse of f(y)=x^2-20x+100
|
inverse\:f(y)=x^{2}-20x+100
|
inverse of f(x)=((x+10))/(3x)
|
inverse\:f(x)=\frac{(x+10)}{3x}
|
inverse of f(x)=(x+1)(x-5)
|
inverse\:f(x)=(x+1)(x-5)
|
inverse of \sqrt[5]{5x+5}
|
inverse\:\sqrt[5]{5x+5}
|
inverse of f(x)=e^{x-1},x>= 0
|
inverse\:f(x)=e^{x-1},x\ge\:0
|
inverse of f(x)=(sqrt(x)-13)/(20)
|
inverse\:f(x)=\frac{\sqrt{x}-13}{20}
|
inverse of f(x)=17x-37
|
inverse\:f(x)=17x-37
|
inverse of 3/(sqrt(3x+2)-\sqrt{3x-2)}
|
inverse\:\frac{3}{\sqrt{3x+2}-\sqrt{3x-2}}
|
inverse of-2(4-1)-5
|
inverse\:-2(4-1)-5
|
domain of (2x^2-x-7)/(x^2+9)
|
domain\:\frac{2x^{2}-x-7}{x^{2}+9}
|
1/(1+x^2)
|
\frac{1}{1+x^{2}}
|
inverse of f(x)=(2-3x)/4
|
inverse\:f(x)=\frac{2-3x}{4}
|
inverse of (-3)/(x-1)-2
|
inverse\:\frac{-3}{x-1}-2
|
inverse of f(x)=-(3x)/2+5/2
|
inverse\:f(x)=-\frac{3x}{2}+\frac{5}{2}
|
inverse of sin(2t)
|
inverse\:\sin(2t)
|
inverse of x^2+3x+5
|
inverse\:x^{2}+3x+5
|
inverse of x^2+3x+3
|
inverse\:x^{2}+3x+3
|
inverse of f(x)=(2x-7)/(3x-8)
|
inverse\:f(x)=\frac{2x-7}{3x-8}
|
inverse of y=20(2)^{x/(100)}
|
inverse\:y=20(2)^{\frac{x}{100}}
|
inverse of y=4x^3
|
inverse\:y=4x^{3}
|
inverse of 1/2 log_{2x}(x)
|
inverse\:\frac{1}{2}\log_{2x}(x)
|
inverse of 1/p
|
inverse\:\frac{1}{p}
|
inverse of f(x)=sqrt(x-1)^{(1/3)}
|
inverse\:f(x)=\sqrt{x-1}^{(\frac{1}{3})}
|
inverse of f(x)=\sqrt[3]{x+2}-7
|
inverse\:f(x)=\sqrt[3]{x+2}-7
|
inverse of f(x)=((1+5x))/(3x-4)
|
inverse\:f(x)=\frac{(1+5x)}{3x-4}
|
inverse of 100(1-t/(40))^2
|
inverse\:100(1-\frac{t}{40})^{2}
|
inverse of f(x)=3x+(-2)
|
inverse\:f(x)=3x+(-2)
|
inverse of 1/(sqrt(10y+9))
|
inverse\:\frac{1}{\sqrt{10y+9}}
|
inverse of f(x)=sqrt(4+x)
|
inverse\:f(x)=\sqrt{4+x}
|
inflection points of f(x)=x+(17)/x
|
inflection\:points\:f(x)=x+\frac{17}{x}
|
inverse of f(x)=3-log_{10}(1+x^2)
|
inverse\:f(x)=3-\log_{10}(1+x^{2})
|
inverse of f(x)=60t+1000
|
inverse\:f(x)=60t+1000
|
inverse of f(x)=2e^{x+1}-5
|
inverse\:f(x)=2e^{x+1}-5
|
inverse of f(x)=(18-2x)/8
|
inverse\:f(x)=\frac{18-2x}{8}
|
inverse of+(x+2)/(x-7)
|
inverse\:+\frac{x+2}{x-7}
|
inverse of (2-3x)/(2x+6)
|
inverse\:\frac{2-3x}{2x+6}
|
inverse of tan(sqrt(-3))
|
inverse\:\tan(\sqrt{-3})
|
inverse of 11-6x^3
|
inverse\:11-6x^{3}
|
inverse of y= 1/((x+1)^2)
|
inverse\:y=\frac{1}{(x+1)^{2}}
|
inverse of 5sqrt(x)-3
|
inverse\:5\sqrt{x}-3
|
inverse of f(x)=5x^2
|
inverse\:f(x)=5x^{2}
|