解
(x2−5x+9)log10(2)+log10(125)=3
解
x=2log10(2)5log10(2)+−11log10(2)2−12log10(2)log10(5)+12log10(2),x=2log10(2)5log10(2)−−11log10(2)2−12log10(2)log10(5)+12log10(2)
+1
十進法表記
x=3,x=2解答ステップ
(x2−5x+9)log10(2)+log10(125)=3
拡張 (x2−5x+9)log10(2)+log10(125):log10(2)x2−5log10(2)x+9log10(2)+3log10(5)
log10(2)x2−5log10(2)x+9log10(2)+3log10(5)=3
3を左側に移動します
log10(2)x2−5log10(2)x+9log10(2)+3log10(5)−3=0
解くとthe二次式
x1,2=2log10(2)−(−5log10(2))±(−5log10(2))2−4log10(2)(9log10(2)+3log10(5)−3)
(−5log10(2))2−4log10(2)(9log10(2)+3log10(5)−3)=−11log10(2)2−12log10(2)log10(5)+12log10(2)
x1,2=2log10(2)−(−5log10(2))±−11log10(2)2−12log10(2)log10(5)+12log10(2)
解を分離するx1=2log10(2)−(−5log10(2))+−11log10(2)2−12log10(2)log10(5)+12log10(2),x2=2log10(2)−(−5log10(2))−−11log10(2)2−12log10(2)log10(5)+12log10(2)
x=2log10(2)−(−5log10(2))+−11log10(2)2−12log10(2)log10(5)+12log10(2):2log10(2)5log10(2)+−11log10(2)2−12log10(2)log10(5)+12log10(2)
x=2log10(2)−(−5log10(2))−−11log10(2)2−12log10(2)log10(5)+12log10(2):2log10(2)5log10(2)−−11log10(2)2−12log10(2)log10(5)+12log10(2)
二次equationの解:x=2log10(2)5log10(2)+−11log10(2)2−12log10(2)log10(5)+12log10(2),x=2log10(2)5log10(2)−−11log10(2)2−12log10(2)log10(5)+12log10(2)