解答
x6=363+36i
解答
x=672cos(36π)+672isin(36π),x=672cos(3613π)+672isin(3613π),x=672cos(3625π)+672isin(3625π),x=672cos(3637π)+672isin(3637π),x=672cos(3649π)+672isin(3649π),x=672cos(3661π)+672isin(3661π)
求解步骤
x6=363+36i
For zn=athe solutions are zk=n∣a∣(cos(narg(a)+2kπ)+isin(narg(a)+2kπ)),
k=0,1,…,n−1
对于 n=6,a=363+36i∣a∣=72
arg(a)=6π
x=672(cos(66π+2⋅0π)+isin(66π+2⋅0π)),x=672(cos(66π+2⋅1π)+isin(66π+2⋅1π)),x=672(cos(66π+2⋅2π)+isin(66π+2⋅2π)),x=672(cos(66π+2⋅3π)+isin(66π+2⋅3π)),x=672(cos(66π+2⋅4π)+isin(66π+2⋅4π)),x=672(cos(66π+2⋅5π)+isin(66π+2⋅5π))
化简 672(cos(66π+2⋅0π)+isin(66π+2⋅0π)):672cos(36π)+672isin(36π)
化简 672(cos(66π+2⋅1π)+isin(66π+2⋅1π)):672cos(3613π)+672isin(3613π)
化简 672(cos(66π+2⋅2π)+isin(66π+2⋅2π)):672cos(3625π)+672isin(3625π)
化简 672(cos(66π+2⋅3π)+isin(66π+2⋅3π)):672cos(3637π)+672isin(3637π)
化简 672(cos(66π+2⋅4π)+isin(66π+2⋅4π)):672cos(3649π)+672isin(3649π)
化简 672(cos(66π+2⋅5π)+isin(66π+2⋅5π)):672cos(3661π)+672isin(3661π)
x=672cos(36π)+672isin(36π),x=672cos(3613π)+672isin(3613π),x=672cos(3625π)+672isin(3625π),x=672cos(3637π)+672isin(3637π),x=672cos(3649π)+672isin(3649π),x=672cos(3661π)+672isin(3661π)