解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
AI Chat
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 代数 >

展开 (6-\sqrt[5]{x/(13060694016)})^{20}

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

展开 (6−513060694016x​​)20

解答

620−156728328192052164​5x​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+533​3230522​5x6​​−5130606940162​77520x5x2​​+5130606940163​20995x5x3​​−5130606940169​6.09354E135x9​​+1306069401621.11715E13x2​−13060694016243535232053243​52​5x11​​+1306069401625130606940162​211581227520x25x2​​−1306069401625130606940163​21700638720x25x3​​+1306069401625130606940164​1808386560x25x4​​−130606940163120559104x3​+13060694016329070536​5x16​​−1306069401635130606940162​246240x35x2​​+1306069401635130606940163​6840x35x3​​−1306069401635130606940164​120x35x4​​+130606940164x4​
求解步骤
(6−513060694016x​​)20
使用二项式定理: (a+b)n=i=0∑n​(in​)a(n−i)bia=6,b=−513060694016x​​
=i=0∑20​(i20​)⋅6(20−i)(−513060694016x​​)i
展开求和
=0!(20−0)!20!​⋅620(−513060694016x​​)0+1!(20−1)!20!​⋅619(−513060694016x​​)1+2!(20−2)!20!​⋅618(−513060694016x​​)2+3!(20−3)!20!​⋅617(−513060694016x​​)3+4!(20−4)!20!​⋅616(−513060694016x​​)4+5!(20−5)!20!​⋅615(−513060694016x​​)5+6!(20−6)!20!​⋅614(−513060694016x​​)6+7!(20−7)!20!​⋅613(−513060694016x​​)7+8!(20−8)!20!​⋅612(−513060694016x​​)8+9!(20−9)!20!​⋅611(−513060694016x​​)9+10!(20−10)!20!​⋅610(−513060694016x​​)10+11!(20−11)!20!​⋅69(−513060694016x​​)11+12!(20−12)!20!​⋅68(−513060694016x​​)12+13!(20−13)!20!​⋅67(−513060694016x​​)13+14!(20−14)!20!​⋅66(−513060694016x​​)14+15!(20−15)!20!​⋅65(−513060694016x​​)15+16!(20−16)!20!​⋅64(−513060694016x​​)16+17!(20−17)!20!​⋅63(−513060694016x​​)17+18!(20−18)!20!​⋅62(−513060694016x​​)18+19!(20−19)!20!​⋅61(−513060694016x​​)19+20!(20−20)!20!​⋅60(−513060694016x​​)20
化简 0!(20−0)!20!​⋅620(−513060694016x​​)0:620
化简 1!(20−1)!20!​⋅619(−513060694016x​​)1:−513060694016​619⋅205x​​
化简 2!(20−2)!20!​⋅618(−513060694016x​​)2:618⋅190(513060694016x​​)2
化简 3!(20−3)!20!​⋅617(−513060694016x​​)3:−617⋅1140(513060694016x​​)3
化简 4!(20−4)!20!​⋅616(−513060694016x​​)4:616⋅4845(513060694016x​​)4
化简 5!(20−5)!20!​⋅615(−513060694016x​​)5:−558144x
化简 6!(20−6)!20!​⋅614(−513060694016x​​)6:614⋅38760(513060694016x​​)6
化简 7!(20−7)!20!​⋅613(−513060694016x​​)7:−613⋅77520(513060694016x​​)7
化简 8!(20−8)!20!​⋅612(−513060694016x​​)8:612⋅125970(513060694016x​​)8
化简 9!(20−9)!20!​⋅611(−513060694016x​​)9:−362880⋅1306069401659​2.21122E19(5x​)9​
化简 10!(20−10)!20!​⋅610(−513060694016x​​)10:130606940162⋅36288004.05391E19x2​
化简 11!(20−11)!20!​⋅69(−513060694016x​​)11:−1692649820160(513060694016x​​)11
化简 12!(20−12)!20!​⋅68(−513060694016x​​)12:211581227520(513060694016x​​)12
化简 13!(20−13)!20!​⋅67(−513060694016x​​)13:−21700638720(513060694016x​​)13
化简 14!(20−14)!20!​⋅66(−513060694016x​​)14:1808386560(513060694016x​​)14
化简 15!(20−15)!20!​⋅65(−513060694016x​​)15:−130606940163120559104x3​
化简 16!(20−16)!20!​⋅64(−513060694016x​​)16:6279120(513060694016x​​)16
化简 17!(20−17)!20!​⋅63(−513060694016x​​)17:−246240(513060694016x​​)17
化简 18!(20−18)!20!​⋅62(−513060694016x​​)18:6840(513060694016x​​)18
化简 19!(20−19)!20!​⋅61(−513060694016x​​)19:−120(513060694016x​​)19
化简 20!(20−20)!20!​⋅60(−513060694016x​​)20:130606940164x4​
=620−513060694016​619⋅205x​​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+614⋅38760(513060694016x​​)6−613⋅77520(513060694016x​​)7+612⋅125970(513060694016x​​)8−362880⋅1306069401659​2.21122E19(5x​)9​+130606940162⋅36288004.05391E19x2​−1692649820160(513060694016x​​)11+211581227520(513060694016x​​)12−21700638720(513060694016x​​)13+1808386560(513060694016x​​)14−130606940163120559104x3​+6279120(513060694016x​​)16−246240(513060694016x​​)17+6840(513060694016x​​)18−120(513060694016x​​)19+130606940164x4​
化简 620−513060694016​619⋅205x​​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+614⋅38760(513060694016x​​)6−613⋅77520(513060694016x​​)7+612⋅125970(513060694016x​​)8−362880⋅1306069401659​2.21122E19(5x​)9​+130606940162⋅36288004.05391E19x2​−1692649820160(513060694016x​​)11+211581227520(513060694016x​​)12−21700638720(513060694016x​​)13+1808386560(513060694016x​​)14−130606940163120559104x3​+6279120(513060694016x​​)16−246240(513060694016x​​)17+6840(513060694016x​​)18−120(513060694016x​​)19+130606940164x4​:620−1567283281920⋅21654​5x​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+353​3230⋅252​x56​​−5130606940162​77520x5x2​​+5130606940163​20995x5x3​​−1306069401659​6.09354E13x59​​+1306069401621.11715E13x2​−130606940162435352320⋅32453​52​x511​​+1306069401625130606940162​211581227520x25x2​​−1306069401625130606940163​21700638720x25x3​​+1306069401625130606940164​1808386560x25x4​​−130606940163120559104x3​+13060694016329070536​x516​​−1306069401635130606940162​246240x35x2​​+1306069401635130606940163​6840x35x3​​−1306069401635130606940164​120x35x4​​+130606940164x4​
=620−1567283281920⋅21654​5x​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+353​3230⋅252​x56​​−5130606940162​77520x5x2​​+5130606940163​20995x5x3​​−1306069401659​6.09354E13x59​​+1306069401621.11715E13x2​−130606940162435352320⋅32453​52​x511​​+1306069401625130606940162​211581227520x25x2​​−1306069401625130606940163​21700638720x25x3​​+1306069401625130606940164​1808386560x25x4​​−130606940163120559104x3​+13060694016329070536​x516​​−1306069401635130606940162​246240x35x2​​+1306069401635130606940163​6840x35x3​​−1306069401635130606940164​120x35x4​​+130606940164x4​
化简 620−1567283281920⋅21654​5x​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+353​3230⋅252​x56​​−5130606940162​77520x5x2​​+5130606940163​20995x5x3​​−1306069401659​6.09354E13x59​​+1306069401621.11715E13x2​−130606940162435352320⋅32453​52​x511​​+1306069401625130606940162​211581227520x25x2​​−1306069401625130606940163​21700638720x25x3​​+1306069401625130606940164​1808386560x25x4​​−130606940163120559104x3​+13060694016329070536​x516​​−1306069401635130606940162​246240x35x2​​+1306069401635130606940163​6840x35x3​​−1306069401635130606940164​120x35x4​​+130606940164x4​:620−156728328192052164​5x​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+533​3230522​5x6​​−5130606940162​77520x5x2​​+5130606940163​20995x5x3​​−5130606940169​6.09354E135x9​​+1306069401621.11715E13x2​−13060694016243535232053243​52​5x11​​+1306069401625130606940162​211581227520x25x2​​−1306069401625130606940163​21700638720x25x3​​+1306069401625130606940164​1808386560x25x4​​−130606940163120559104x3​+13060694016329070536​5x16​​−1306069401635130606940162​246240x35x2​​+1306069401635130606940163​6840x35x3​​−1306069401635130606940164​120x35x4​​+130606940164x4​
=620−156728328192052164​5x​+618⋅190(513060694016x​​)2−617⋅1140(513060694016x​​)3+616⋅4845(513060694016x​​)4−558144x+533​3230522​5x6​​−5130606940162​77520x5x2​​+5130606940163​20995x5x3​​−5130606940169​6.09354E135x9​​+1306069401621.11715E13x2​−13060694016243535232053243​52​5x11​​+1306069401625130606940162​211581227520x25x2​​−1306069401625130606940163​21700638720x25x3​​+1306069401625130606940164​1808386560x25x4​​−130606940163120559104x3​+13060694016329070536​5x16​​−1306069401635130606940162​246240x35x2​​+1306069401635130606940163​6840x35x3​​−1306069401635130606940164​120x35x4​​+130606940164x4​

流行的例子

(\partial)/(\partial y)((x)(x^2y-xy^2))∂y∂​((x)(x2y−xy2))展开 (3xy+2y)dx+3xdyexpand(3xy+2y)dx+3xdy展开 F(-3,-3)expandF(−3,−3)展开 b(-3,0)yf(0,-4)expandb(−3,0)yf(0,−4)展开 (14(n+1))/nexpandn14(n+1)​
学习工具人工智能数学求解器AI Chat工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序
公司关于 Symbolab日志帮助
合法的隐私权Service TermsCookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024