# Limits Cheat Sheet

• Algebra
• Number Rules
• Expand Rules
• Fractions Rules
• Absolute Rules
• Exponent Rules
• Factor Rules
• Factorial Rules
• Log Rules
• Undefined
• Complex Number Rules
• Trigonometry
• Basic Identities
• Pythagorean Identities
• Double-Angle Identities
• Sum/Difference Identities
• Product-To-Sum Identities
• Triple-Angle Identities
• Function Ranges
• Function Values
• Limits
• Limit Properties
• Limit to Infinity Properties
• Indeterminate Forms
• Common Limits
• Limit Rules
• Derivatives
• Derivatives Rules
• Common Derivatives
• Trigonometric Derivatives
• Arc Trigonometric Derivatives
• Hyperbolic Derivatives
• Arc Hyperbolic Derivatives
• Integrals
• Common Integrals
• Trigonometric Integrals
• Arc Trigonometric Integrals
• Hyperbolic Integrals
• Integrals of Special Functions
• Indefinite Integrals Rules
• Definite Integrals Rules

# Limits Cheat Sheet

## Limit Properties

\mathrm{If\:the\:limit\:of\:f(x),\:and\:g(x)\:exists,\:then\:the\:following\:apply:}
\lim_{x\to a}(x}=a
\lim_{x\to{a}}[c\cdot{f(x)}]=c\cdot\lim_{x\to{a}}{f(x)}
\lim_{x\to{a}}[(f(x))^c]=(\lim_{x\to{a}}{f(x)})^c
\lim_{x\to{a}}[f(x)\pm{g(x)}]=\lim_{x\to{a}}{f(x)}\pm\lim_{x\to{a}}{g(x)}
\lim_{x\to{a}}[f(x)\cdot{g(x)}]=\lim_{x\to{a}}{f(x)}\cdot\lim_{x\to{a}}{g(x)}

## Limit to Infinity Properties

\mathrm{For}\:\lim_{x\to c}f(x)=\infty, \lim_{x\to c}g(x)=L,\:\mathrm{the\:following\:apply:}
\lim_{x\to c}[f(x)\pm g(x)]=\infty
\lim_{x\to c}\frac{g(x)}{f(x)}=0
\lim_{x\to \infty}\left(\frac{c}{x^a}\right)=0

## Indeterminate Forms

0^{0} \infty^{0}
\frac{\infty}{\infty} \frac{0}{0}
0\cdot\infty \infty-\infty
1^{\infty}

## Common Limits

\lim _{x\to \infty}((1+\frac{k}{x})^x)=e^k \lim _{x\to \infty}((\frac{x}{x+k})^x)=e^{-k}
\lim _{x\to 0}((1+x)^{\frac{1}{x}})=e

## Limit Rules

Limit of a constant \lim_{x\to{a}}{c}=c
Basic Limit \lim_{x\to{a}}{x}=a
Squeeze Theorem
\mathrm{Let\:f,\:g\:and\:h\:be\:functions\:such\:that\:for\:all}\:x\in \left[a,\:b\right]\:
\mathrm{(except\:possibly\:at\:the\:limit\:point\:c),\:} f\left(x\right)\le h\left(x\right)\le g\left(x\right)
\mathrm{Also\:suppose\:that,\:}\lim _{x\to c}f\left(x\right)=\lim _{x\to c}g\left(x\right)=L
\mathrm{Then\:for\:any\:}a\le c\le b,\:\lim _{x\to c}h\left(x\right)=L
L'Hopital's Rule
\mathrm{For}\:\lim_{x\to{a}}\left(\frac{f(x)}{g(x)}\right),
\mathrm{if}\:\lim_{x\to{a}}\left(\frac{f(x)}{g(x)}\right)=\frac{0}{0}\:\mathrm{or}\:\lim_{x\to a}\left(\frac{f(x)}{g(x)}\right)=\frac{\pm\infty}{\pm\infty},
Divergence Criterion
\mathrm{If\:there\:exists\:two\:sequences,}\:\left\{x_n\right\}_{n=1}^{\infty }\:\mathrm{and}\:\left\{y_n\right\}_{n=1}^{\infty }
\mathrm{with:}
x_n\ne{c},\:\mathrm{and}\:y_n\ne{c}
\lim{x_n}=\lim{y_n}=c
\lim{f(x_n)}\ne\lim{f(y_n)}
\mathrm{Then}\:\lim_{x\to\:c}f(x)\:\mathrm{does\:not\:exist}
Limit Chain Rule
\mathrm{if}\:\lim_{u \to b}f(u)=L,\:\mathrm{and}\:\lim_{x \to a}g(x)=b,
\mathrm{and}\:f(x)\:\mathrm{is\:continuous\:at}\:x=b
\mathrm{Then:}\:\lim_{x \to a} f(g(x))=L
I Don't Have An Account

An email notification with password reset instructions will be sent to you.

### We've sentthe email to:

[email protected]
Join 200 million happy users!

### THANK YOUFOR SUBSCRIBING!

Continue to site »

### THANK YOUFOR SUBSCRIBING!

Continue to site »

### Transaction Failed!

Please try again using a different payment method

Subscribe to get much more:

• Web & Mobile subscription
• Notebook (Unlimited storage)
• Personalized practice problems
• Quizzes
• Detailed progress report
Remind me later »
 One Time Payment $12.99 USD for 2 months Weekly Subscription$1.99 USD per week until cancelled Monthly Subscription $6.99 USD per month until cancelled Annual Subscription$29.99 USD per year until cancelled
User Data Missing

 One Time Payment $12.99 USD for 2 months Weekly Subscription$1.99 USD per week until cancelled Monthly Subscription $6.99 USD per month until cancelled Annual Subscription$29.99 USD per year until cancelled