Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

tan((7pi)/(12))+cot((5pi)/(12))

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

tan(127π​)+cot(125π​)

Lösung

−23​
+1
Dezimale
−3.46410…
Schritte zur Lösung
tan(127π​)+cot(125π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:tan(127π​)=−2−3​
tan(127π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:1−tan(3π​)tan(4π​)tan(3π​)+tan(4π​)​
tan(127π​)
Schreibe tan(127π​)als tan(3π​+4π​)=tan(3π​+4π​)
Benutze die Identität der Winkelsumme: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(3π​)tan(4π​)tan(3π​)+tan(4π​)​
=1−tan(3π​)tan(4π​)tan(3π​)+tan(4π​)​
Verwende die folgende triviale Identität:tan(3π​)=3​
tan(3π​)
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=3​
Verwende die folgende triviale Identität:tan(4π​)=1
tan(4π​)
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
=1−3​⋅13​+1​
Vereinfache 1−3​⋅13​+1​:−2−3​
1−3​⋅13​+1​
Multipliziere: 3​⋅1=3​=1−3​3​+1​
Rationalisiere 1−3​3​+1​:−2−3​
1−3​3​+1​
Multipliziere mit dem Konjugat 1+3​1+3​​=(1−3​)(1+3​)(3​+1)(1+3​)​
(3​+1)(1+3​)=4+23​
(3​+1)(1+3​)
Wende Exponentenregel an: ab⋅ac=ab+c(3​+1)(1+3​)=(3​+1)1+1=(3​+1)1+1
Addiere die Zahlen: 1+1=2=(3​+1)2
Wende Formel für perfekte quadratische Gleichungen an: (a+b)2=a2+2ab+b2a=3​,b=1
=(3​)2+23​⋅1+12
Vereinfache (3​)2+23​⋅1+12:4+23​
(3​)2+23​⋅1+12
Wende Regel an 1a=112=1=(3​)2+2⋅1⋅3​+1
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
23​⋅1=23​
23​⋅1
Multipliziere die Zahlen: 2⋅1=2=23​
=3+23​+1
Addiere die Zahlen: 3+1=4=4+23​
=4+23​
(1−3​)(1+3​)=−2
(1−3​)(1+3​)
Wende Formel zur Differenz von zwei Quadraten an:(a−b)(a+b)=a2−b2a=1,b=3​=12−(3​)2
Vereinfache 12−(3​)2:−2
12−(3​)2
Wende Regel an 1a=112=1=1−(3​)2
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
=1−3
Subtrahiere die Zahlen: 1−3=−2=−2
=−2
=−24+23​​
Wende Bruchregel an: −ba​=−ba​=−24+23​​
Streiche 24+23​​:2+3​
24+23​​
Faktorisiere 4+23​:2(2+3​)
4+23​
Schreibe um=2⋅2+23​
Klammere gleiche Terme aus 2=2(2+3​)
=22(2+3​)​
Teile die Zahlen: 22​=1=2+3​
=−(2+3​)
Setze Klammern=−(2)−(3​)
Wende Minus-Plus Regeln an+(−a)=−a=−2−3​
=−2−3​
=−2−3​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cot(125π​)=2−3​
cot(125π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:tan(125π​)1​
cot(125π​)
Verwende die grundlegende trigonometrische Identität: cot(x)=tan(x)1​=tan(125π​)1​
=tan(125π​)1​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:tan(125π​)=2+3​
tan(125π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
tan(125π​)
Schreibe tan(125π​)als tan(4π​+6π​)=tan(4π​+6π​)
Benutze die Identität der Winkelsumme: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
=1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
Verwende die folgende triviale Identität:tan(4π​)=1
tan(4π​)
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
Verwende die folgende triviale Identität:tan(6π​)=33​​
tan(6π​)
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1−1⋅33​​1+33​​​
Vereinfache 1−1⋅33​​1+33​​​:2+3​
1−1⋅33​​1+33​​​
Multipliziere: 1⋅33​​=33​​=1−33​​1+33​​​
Füge 1−33​​zusammen:3​3​−1​
1−33​​
Wandle das Element in einen Bruch um: 1=31⋅3​=31⋅3​−33​​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=31⋅3−3​​
Multipliziere die Zahlen: 1⋅3=3=33−3​​
Faktorisiere 3−3​:3​(3​−1)
3−3​
3=3​3​=3​3​−3​
Klammere gleiche Terme aus 3​=3​(3​−1)
=33​(3​−1)​
Streiche 33​(3​−1)​:3​3​−1​
33​(3​−1)​
Wende Radikal Regel an: na​=an1​3​=321​=3321​(3​−1)​
Wende Exponentenregel an: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​−1​
Subtrahiere die Zahlen: 1−21​=21​=321​3​−1​
Wende Radikal Regel an: an1​=na​321​=3​=3​3​−1​
=3​3​−1​
=3​3​−1​1+33​​​
Füge 1+33​​zusammen:3​3​+1​
1+33​​
Wandle das Element in einen Bruch um: 1=31⋅3​=31⋅3​+33​​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=31⋅3+3​​
Multipliziere die Zahlen: 1⋅3=3=33+3​​
Faktorisiere 3+3​:3​(3​+1)
3+3​
3=3​3​=3​3​+3​
Klammere gleiche Terme aus 3​=3​(3​+1)
=33​(3​+1)​
Streiche 33​(3​+1)​:3​3​+1​
33​(3​+1)​
Wende Radikal Regel an: na​=an1​3​=321​=3321​(1+3​)​
Wende Exponentenregel an: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​+1​
Subtrahiere die Zahlen: 1−21​=21​=321​3​+1​
Wende Radikal Regel an: an1​=na​321​=3​=3​3​+1​
=3​3​+1​
=3​3​−1​3​3​+1​​
Teile Brüche: dc​ba​​=b⋅ca⋅d​=3​(3​−1)(3​+1)3​​
Streiche die gemeinsamen Faktoren: 3​=3​−13​+1​
Rationalisiere 3​−13​+1​:2+3​
3​−13​+1​
Multipliziere mit dem Konjugat 3​+13​+1​=(3​−1)(3​+1)(3​+1)(3​+1)​
(3​+1)(3​+1)=4+23​
(3​+1)(3​+1)
Wende Exponentenregel an: ab⋅ac=ab+c(3​+1)(3​+1)=(3​+1)1+1=(3​+1)1+1
Addiere die Zahlen: 1+1=2=(3​+1)2
Wende Formel für perfekte quadratische Gleichungen an: (a+b)2=a2+2ab+b2a=3​,b=1
=(3​)2+23​⋅1+12
Vereinfache (3​)2+23​⋅1+12:4+23​
(3​)2+23​⋅1+12
Wende Regel an 1a=112=1=(3​)2+2⋅1⋅3​+1
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
23​⋅1=23​
23​⋅1
Multipliziere die Zahlen: 2⋅1=2=23​
=3+23​+1
Addiere die Zahlen: 3+1=4=4+23​
=4+23​
(3​−1)(3​+1)=2
(3​−1)(3​+1)
Wende Formel zur Differenz von zwei Quadraten an:(a−b)(a+b)=a2−b2a=3​,b=1=(3​)2−12
Vereinfache (3​)2−12:2
(3​)2−12
Wende Regel an 1a=112=1=(3​)2−1
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
=3−1
Subtrahiere die Zahlen: 3−1=2=2
=2
=24+23​​
Faktorisiere 4+23​:2(2+3​)
4+23​
Schreibe um=2⋅2+23​
Klammere gleiche Terme aus 2=2(2+3​)
=22(2+3​)​
Teile die Zahlen: 22​=1=2+3​
=2+3​
=2+3​
=2+3​1​
Vereinfache 2+3​1​:2−3​
2+3​1​
Multipliziere mit dem Konjugat 2−3​2−3​​=(2+3​)(2−3​)1⋅(2−3​)​
1⋅(2−3​)=2−3​
(2+3​)(2−3​)=1
(2+3​)(2−3​)
Wende Formel zur Differenz von zwei Quadraten an:(a+b)(a−b)=a2−b2a=2,b=3​=22−(3​)2
Vereinfache 22−(3​)2:1
22−(3​)2
22=4
22
22=4=4
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
=4−3
Subtrahiere die Zahlen: 4−3=1=1
=1
=12−3​​
Wende Regel an 1a​=a=2−3​
=2−3​
=−2−3​+2−3​
Vereinfache=−23​

Beliebte Beispiele

sin(arccos(-1)-arccos(1/2))sin(arccos(−1)−arccos(21​))ln|sin(pi/2)|ln​sin(2π​)​sin((5pi)/(12))sin(pi/(12))sin(125π​)sin(12π​)1+tan^2(0)1+tan2(0)tan(6/4)tan(46​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024