Lösung
Lösung
+1
Dezimale
Schritte zur Lösung
Umschreiben mit Hilfe von Trigonometrie-Identitäten:
Umschreiben mit Hilfe von Trigonometrie-Identitäten:
Verwende die folgenden Identitäten:
Vereinfache
Umschreiben mit Hilfe von Trigonometrie-Identitäten:
Schreibe als
Verwende die Halbwinkel Identität:
Verwende die Doppelwinkelidentität
Ersetze mit
Tausche die Seiten
Teile beide Seiten durch
Square root both sides
Choose the root sign according to the quadrant of :
Umschreiben mit Hilfe von Trigonometrie-Identitäten:
Zeige dass:
Verwende das folgende Produkt, um die Summe der Identitäten zu finden:
Zeige dass:
Verwende die Doppelwinkelidentität:
Teile beide Seiten durch
Verwende die folgenden Identitäten:
Teile beide Seiten durch
Teile beide Seiten durch
Ersetze
Zeige dass:
Wende die Faktorisierungsregel an:
Fasse zusammen
Zeige dass:
Verwende die Doppelwinkelidentität:
Teile beide Seiten durch
Verwende die folgenden Identitäten:
Teile beide Seiten durch
Teile beide Seiten durch
Ersetze
Ersetze
Fasse zusammen
Füge zu beiden Seiten hinzu
Fasse zusammen
Ziehe die Quadratwurzel auf beiden Seiten
darf nicht negativ seindarf nicht negativ sein
Füge die folgenden Gleichungen hinzu
Fasse zusammen
Vereinfache
Füge zusammen:
Wandle das Element in einen Bruch um:
Da die Nenner gleich sind, fasse die Brüche zusammen.:
Multipliziere die Zahlen:
Addiere die Zahlen:
Wende Bruchregel an:
Multipliziere die Zahlen:
Wende Radikal Regel an: angenommen
Primfaktorzerlegung von
ist durch teilbar
ist durch teilbar
ist eine Primzahl, deshalb ist keine weitere Faktorisierung möglich.
Wende Exponentenregel an:
Wende Radikal Regel an:
Wende Radikal Regel an:
Rationalisiere
Multipliziere mit dem Konjugat
Wende Exponentenregel an:
Addiere gleiche Elemente:
Multipliziere Brüche:
Streiche die gemeinsamen Faktoren:
Addiere die Zahlen:
Vereinfache
Teile Brüche:
Multipliziere die Zahlen:
Faktorisiere
Faktorisiere
Streiche
Wende Radikal Regel an:
Wende Exponentenregel an:
Subtrahiere die Zahlen:
Wende Exponentenregel an:
Fasse zusammen
Multipliziere die Zahlen:
Rationalisiere
Multipliziere mit dem Konjugat
Wende Radikal Regel an:
Wende das Distributivgesetz an:
Vereinfache
Multipliziere die Zahlen:
Wende Exponentenregel an:
Füge zusammen:
Wandle das Element in einen Bruch um:
Da die Nenner gleich sind, fasse die Brüche zusammen.:
Multipliziere die Zahlen:
Addiere die Zahlen:
Wende Exponentenregel an:
Fasse zusammen
Multipliziere mit dem Konjugat
Wende Exponentenregel an:
Füge zusammen:
Wandle das Element in einen Bruch um:
Da die Nenner gleich sind, fasse die Brüche zusammen.:
Multipliziere die Zahlen:
Addiere die Zahlen:
Wende Exponentenregel an:
Füge zusammen:
Wandle das Element in einen Bruch um:
Da die Nenner gleich sind, fasse die Brüche zusammen.:
Multipliziere die Zahlen:
Addiere die Zahlen:
Wende Formel zur Differenz von zwei Quadraten an:
Vereinfache
Wende Exponentenregel an:
Multipliziere Brüche:
Streiche die gemeinsamen Faktoren:
Subtrahiere die Zahlen:
Streiche die gemeinsamen Faktoren:
Faktorisiere
Faktorisiere
Schreibe um
Klammere gleiche Terme aus
Fasse zusammen
Streiche die gemeinsamen Faktoren: