Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3-4sin^3(x)=sin^3(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3−4sin3(x)=sin3(x)

Solution

x=1.00364…+2πn,x=π−1.00364…+2πn
+1
Degrees
x=57.50439…∘+360∘n,x=122.49560…∘+360∘n
Solution steps
3−4sin3(x)=sin3(x)
Solve by substitution
3−4sin3(x)=sin3(x)
Let: sin(x)=u3−4u3=u3
3−4u3=u3:u=353​​,u=−10532​33​​+i10365​⋅532​​,u=−10532​33​​−i10365​⋅532​​
3−4u3=u3
Move 3to the right side
3−4u3=u3
Subtract 3 from both sides3−4u3−3=u3−3
Simplify−4u3=u3−3
−4u3=u3−3
Move u3to the left side
−4u3=u3−3
Subtract u3 from both sides−4u3−u3=u3−3−u3
Simplify−5u3=−3
−5u3=−3
Divide both sides by −5
−5u3=−3
Divide both sides by −5−5−5u3​=−5−3​
Simplifyu3=53​
u3=53​
For x3=f(a) the solutions are x=3f(a)​,3f(a)​2−1−3​i​,3f(a)​2−1+3​i​
u=353​​,u=353​​2−1+3​i​,u=353​​2−1−3​i​
Simplify 353​​2−1+3​i​:−10532​33​​+i10365​⋅532​​
353​​2−1+3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1+3​i)353​​​
353​​=35​33​​
353​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=35​33​​
=235​33​​(−1+3​i)​
Multiply (−1+3​i)35​33​​:35​−33​+365​i​
(−1+3​i)35​33​​
Multiply fractions: a⋅cb​=ca⋅b​=35​33​(−1+3​i)​
Expand 33​(−1+3​i):−33​+365​i
33​(−1+3​i)
Apply the distributive law: a(b+c)=ab+aca=33​,b=−1,c=3​i=33​(−1)+33​3​i
Apply minus-plus rules+(−a)=−a=−1⋅33​+33​3​i
Simplify −1⋅33​+33​3​i:−33​+365​i
−1⋅33​+33​3​i
1⋅33​=33​
1⋅33​
Multiply: 1⋅33​=33​=33​
33​3​i=365​i
33​3​i
Apply exponent rule: ab⋅ac=ab+c33​3​=331​⋅321​=331​+21​=331​+21​i
331​+21​=365​
331​+21​
Join 31​+21​:65​
31​+21​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 31​:multiply the denominator and numerator by 231​=3⋅21⋅2​=62​
For 21​:multiply the denominator and numerator by 321​=2⋅31⋅3​=63​
=62​+63​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=62+3​
Add the numbers: 2+3=5=65​
=365​
=365​i
=−33​+365​i
=−33​+365​i
=35​−33​+365​i​
=235​−33​+365​i​​
Apply the fraction rule: acb​​=c⋅ab​=35​⋅2−33​+365​i​
Rationalize 235​−33​+365​i​:10532​(−33​+365​i)​
235​−33​+365​i​
Multiply by the conjugate 532​532​​=35​⋅2⋅532​(−33​+365​i)⋅532​​
35​⋅2⋅532​=10
35​⋅2⋅532​
Apply exponent rule: ab⋅ac=ab+c532​35​=532​⋅531​=532​+31​=532​+31​⋅2
532​+31​=5
532​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=51
Apply rule a1=a=5
=5⋅2
Multiply the numbers: 5⋅2=10=10
=10532​(−33​+365​i)​
=10532​(−33​+365​i)​
Rewrite 10532​(−33​+365​i)​ in standard complex form: −1033​⋅532​​+10365​⋅532​​i
10532​(−33​+365​i)​
Factor 10:2⋅5
Factor 10=2⋅5
=2⋅5532​(−33​+365​i)​
Cancel 2⋅5532​(−33​+365​i)​:2⋅531​−33​+365​i​
2⋅5532​(−33​+365​i)​
Apply exponent rule: xbxa​=xb−a1​5532​​=51−32​1​=2⋅5−32​+1−33​+365​i​
Subtract the numbers: 1−32​=31​=2⋅531​−33​+365​i​
=2⋅531​−33​+365​i​
531​=35​
Apply radical rule: an1​=na​531​=35​=235​−33​+365​i​
Apply the fraction rule: ca±b​=ca​±cb​235​−33​+365​i​=−235​33​​+235​365​i​=−235​33​​+235​365​i​
235​365​​=10365​⋅532​​
235​365​​
Multiply by the conjugate 532​532​​=235​⋅532​365​⋅532​​
235​⋅532​=10
235​⋅532​
Apply exponent rule: ab⋅ac=ab+c532​35​=532​⋅531​=532​+31​=2⋅532​+31​
532​+31​=5
532​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=51
Apply rule a1=a=5
=2⋅5
Multiply the numbers: 2⋅5=10=10
=10365​⋅532​​
=−235​33​​+10365​⋅532​​i
−235​33​​=−1033​⋅532​​
−235​33​​
Multiply by the conjugate 532​532​​=−235​⋅532​33​⋅532​​
235​⋅532​=10
235​⋅532​
Apply exponent rule: ab⋅ac=ab+c532​35​=532​⋅531​=532​+31​=2⋅532​+31​
532​+31​=5
532​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=51
Apply rule a1=a=5
=2⋅5
Multiply the numbers: 2⋅5=10=10
=−1033​⋅532​​
=−1033​⋅532​​+10365​⋅532​​i
=−1033​⋅532​​+10365​⋅532​​i
Simplify 353​​2−1−3​i​:−10532​33​​−i10365​⋅532​​
353​​2−1−3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1−3​i)353​​​
353​​=35​33​​
353​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=35​33​​
=235​33​​(−1−3​i)​
Multiply (−1−3​i)35​33​​:35​−33​−365​i​
(−1−3​i)35​33​​
Multiply fractions: a⋅cb​=ca⋅b​=35​33​(−1−3​i)​
Expand 33​(−1−3​i):−33​−365​i
33​(−1−3​i)
Apply the distributive law: a(b−c)=ab−aca=33​,b=−1,c=3​i=33​(−1)−33​3​i
Apply minus-plus rules+(−a)=−a=−1⋅33​−33​3​i
Simplify −1⋅33​−33​3​i:−33​−365​i
−1⋅33​−33​3​i
1⋅33​=33​
1⋅33​
Multiply: 1⋅33​=33​=33​
33​3​i=365​i
33​3​i
Apply exponent rule: ab⋅ac=ab+c33​3​=331​⋅321​=331​+21​=331​+21​i
331​+21​=365​
331​+21​
Join 31​+21​:65​
31​+21​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 31​:multiply the denominator and numerator by 231​=3⋅21⋅2​=62​
For 21​:multiply the denominator and numerator by 321​=2⋅31⋅3​=63​
=62​+63​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=62+3​
Add the numbers: 2+3=5=65​
=365​
=365​i
=−33​−365​i
=−33​−365​i
=35​−33​−365​i​
=235​−33​−365​i​​
Apply the fraction rule: acb​​=c⋅ab​=35​⋅2−33​−365​i​
Rationalize 235​−33​−365​i​:10532​(−33​−365​i)​
235​−33​−365​i​
Multiply by the conjugate 532​532​​=35​⋅2⋅532​(−33​−365​i)⋅532​​
35​⋅2⋅532​=10
35​⋅2⋅532​
Apply exponent rule: ab⋅ac=ab+c532​35​=532​⋅531​=532​+31​=532​+31​⋅2
532​+31​=5
532​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=51
Apply rule a1=a=5
=5⋅2
Multiply the numbers: 5⋅2=10=10
=10532​(−33​−365​i)​
=10532​(−33​−365​i)​
Rewrite 10532​(−33​−365​i)​ in standard complex form: −1033​⋅532​​−10365​⋅532​​i
10532​(−33​−365​i)​
Factor 10:2⋅5
Factor 10=2⋅5
=2⋅5532​(−33​−365​i)​
Cancel 2⋅5532​(−33​−365​i)​:2⋅531​−33​−365​i​
2⋅5532​(−33​−365​i)​
Apply exponent rule: xbxa​=xb−a1​5532​​=51−32​1​=2⋅5−32​+1−33​−365​i​
Subtract the numbers: 1−32​=31​=2⋅531​−33​−365​i​
=2⋅531​−33​−365​i​
531​=35​
Apply radical rule: an1​=na​531​=35​=235​−33​−365​i​
Apply the fraction rule: ca±b​=ca​±cb​235​−33​−365​i​=−235​33​​−235​365​i​=−235​33​​−235​365​i​
−235​365​​=−10365​⋅532​​
−235​365​​
Multiply by the conjugate 532​532​​=−235​⋅532​365​⋅532​​
235​⋅532​=10
235​⋅532​
Apply exponent rule: ab⋅ac=ab+c532​35​=532​⋅531​=532​+31​=2⋅532​+31​
532​+31​=5
532​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=51
Apply rule a1=a=5
=2⋅5
Multiply the numbers: 2⋅5=10=10
=−10365​⋅532​​
=−235​33​​−10365​⋅532​​i
−235​33​​=−1033​⋅532​​
−235​33​​
Multiply by the conjugate 532​532​​=−235​⋅532​33​⋅532​​
235​⋅532​=10
235​⋅532​
Apply exponent rule: ab⋅ac=ab+c532​35​=532​⋅531​=532​+31​=2⋅532​+31​
532​+31​=5
532​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=51
Apply rule a1=a=5
=2⋅5
Multiply the numbers: 2⋅5=10=10
=−1033​⋅532​​
=−1033​⋅532​​−10365​⋅532​​i
=−1033​⋅532​​−10365​⋅532​​i
u=353​​,u=−10532​33​​+i10365​⋅532​​,u=−10532​33​​−i10365​⋅532​​
Substitute back u=sin(x)sin(x)=353​​,sin(x)=−10532​33​​+i10365​⋅532​​,sin(x)=−10532​33​​−i10365​⋅532​​
sin(x)=353​​,sin(x)=−10532​33​​+i10365​⋅532​​,sin(x)=−10532​33​​−i10365​⋅532​​
sin(x)=353​​:x=arcsin(353​​)+2πn,x=π−arcsin(353​​)+2πn
sin(x)=353​​
Apply trig inverse properties
sin(x)=353​​
General solutions for sin(x)=353​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(353​​)+2πn,x=π−arcsin(353​​)+2πn
x=arcsin(353​​)+2πn,x=π−arcsin(353​​)+2πn
sin(x)=−10532​33​​+i10365​⋅532​​:No Solution
sin(x)=−10532​33​​+i10365​⋅532​​
NoSolution
sin(x)=−10532​33​​−i10365​⋅532​​:No Solution
sin(x)=−10532​33​​−i10365​⋅532​​
NoSolution
Combine all the solutionsx=arcsin(353​​)+2πn,x=π−arcsin(353​​)+2πn
Show solutions in decimal formx=1.00364…+2πn,x=π−1.00364…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^4(x)= 3/8+1/2 cos^2(x)+1/8 cos^4(x)cos4(x)=83​+21​cos2(x)+81​cos4(x)sin(2x)=5cos(x)sin(2x)=5cos(x)sin(a)=0.4848sin(a)=0.4848sin^2(x)=2cos^4(x)sin2(x)=2cos4(x)sin^3(x)+cos^3(x)=(1-1)/(2sin^2(x))sin3(x)+cos3(x)=2sin2(x)1−1​

Frequently Asked Questions (FAQ)

  • What is the general solution for 3-4sin^3(x)=sin^3(x) ?

    The general solution for 3-4sin^3(x)=sin^3(x) is x=1.00364…+2pin,x=pi-1.00364…+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024