解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
AI Chat
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 三角函数 >

sin^5(a)=16sin^5(a)-20sin^3(a)+5sin(a)

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

sin5(a)=16sin5(a)−20sin3(a)+5sin(a)

解答

a=2πn,a=π+2πn,a=−0.61547…+2πn,a=π+0.61547…+2πn,a=0.61547…+2πn,a=π−0.61547…+2πn,a=23π​+2πn,a=2π​+2πn
+1
度数
a=0∘+360∘n,a=180∘+360∘n,a=−35.26438…∘+360∘n,a=215.26438…∘+360∘n,a=35.26438…∘+360∘n,a=144.73561…∘+360∘n,a=270∘+360∘n,a=90∘+360∘n
求解步骤
sin5(a)=16sin5(a)−20sin3(a)+5sin(a)
用替代法求解
sin5(a)=16sin5(a)−20sin3(a)+5sin(a)
令:sin(a)=uu5=16u5−20u3+5u
u5=16u5−20u3+5u:u=0,u=−33​​,u=33​​,u=−1,u=1
u5=16u5−20u3+5u
交换两边16u5−20u3+5u=u5
将 u5para o lado esquerdo
16u5−20u3+5u=u5
两边减去 u516u5−20u3+5u−u5=u5−u5
化简15u5−20u3+5u=0
15u5−20u3+5u=0
因式分解 15u5−20u3+5u:5u(3​u+1)(3​u−1)(u+1)(u−1)
15u5−20u3+5u
因式分解出通项 5u:5u(3u4−4u2+1)
15u5−20u3+5u
使用指数法则: ab+c=abacu3=u2u=15u4u−20u2u+5u
将 20 改写为 5⋅4将 15 改写为 5⋅3=5⋅3u4u−5⋅4u2u+5u
因式分解出通项 5u=5u(3u4−4u2+1)
=5u(3u4−4u2+1)
分解 3u4−4u2+1:(3​u+1)(3​u−1)(u+1)(u−1)
3u4−4u2+1
令u=u2=3u2−4u+1
分解 3u2−4u+1:(3u−1)(u−1)
3u2−4u+1
将表达式拆分成组
3u2−4u+1
定义
3的因数:1,3
3
约数 (因数)
找到 3 的质因数:3
3
3 是质数,因此无法因数分解=3
加 1 1
3的因数1,3
3的负因数:−1,−3
将因数乘以 −1 得到负因数−1,−3
对于每两个因数 u∗v=3,检验是否 u+v=−4
检验 u=1,v=3:u∗v=3,u+v=4⇒假检验 u=−1,v=−3:u∗v=3,u+v=−4⇒真
u=−1,v=−3
分组为 (ax2+ux)+(vx+c)(3u2−u)+(−3u+1)
=(3u2−u)+(−3u+1)
从 3u2−u 分解出因式 u:u(3u−1)
3u2−u
使用指数法则: ab+c=abacu2=uu=3uu−u
因式分解出通项 u=u(3u−1)
从 −3u+1 分解出因式 −1:−(3u−1)
−3u+1
因式分解出通项 −1=−(3u−1)
=u(3u−1)−(3u−1)
因式分解出通项 3u−1=(3u−1)(u−1)
=(3u−1)(u−1)
u=u2代回=(u2−1)(3u2−1)
分解 3u2−1:(3​u+1)(3​u−1)
3u2−1
将 3u2−1 改写为 (3​u)2−12
3u2−1
使用根式运算法则: a=(a​)23=(3​)2=(3​)2u2−1
将 1 改写为 12=(3​)2u2−12
使用指数法则: ambm=(ab)m(3​)2u2=(3​u)2=(3​u)2−12
=(3​u)2−12
使用平方差公式: x2−y2=(x+y)(x−y)(3​u)2−12=(3​u+1)(3​u−1)=(3​u+1)(3​u−1)
=(3​u+1)(3​u−1)(u2−1)
分解 u2−1:(u+1)(u−1)
u2−1
将 1 改写为 12=u2−12
使用平方差公式: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(3​u+1)(3​u−1)(u+1)(u−1)
=5u(3​u+1)(3​u−1)(u+1)(u−1)
5u(3​u+1)(3​u−1)(u+1)(u−1)=0
使用零因数法则: If ab=0then a=0or b=0u=0or3​u+1=0or3​u−1=0oru+1=0oru−1=0
解 3​u+1=0:u=−33​​
3​u+1=0
将 1到右边
3​u+1=0
两边减去 13​u+1−1=0−1
化简3​u=−1
3​u=−1
两边除以 3​
3​u=−1
两边除以 3​3​3​u​=3​−1​
化简
3​3​u​=3​−1​
化简 3​3​u​:u
3​3​u​
约分:3​=u
化简 3​−1​:−33​​
3​−1​
使用分式法则: b−a​=−ba​=−3​1​
−3​1​有理化:−33​​
−3​1​
乘以共轭根式 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
使用根式运算法则: a​a​=a3​3​=3=3
=−33​​
=−33​​
u=−33​​
u=−33​​
u=−33​​
解 3​u−1=0:u=33​​
3​u−1=0
将 1到右边
3​u−1=0
两边加上 13​u−1+1=0+1
化简3​u=1
3​u=1
两边除以 3​
3​u=1
两边除以 3​3​3​u​=3​1​
化简
3​3​u​=3​1​
化简 3​3​u​:u
3​3​u​
约分:3​=u
化简 3​1​:33​​
3​1​
乘以共轭根式 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
使用根式运算法则: a​a​=a3​3​=3=3
=33​​
u=33​​
u=33​​
u=33​​
解 u+1=0:u=−1
u+1=0
将 1到右边
u+1=0
两边减去 1u+1−1=0−1
化简u=−1
u=−1
解 u−1=0:u=1
u−1=0
将 1到右边
u−1=0
两边加上 1u−1+1=0+1
化简u=1
u=1
解为u=0,u=−33​​,u=33​​,u=−1,u=1
u=sin(a)代回sin(a)=0,sin(a)=−33​​,sin(a)=33​​,sin(a)=−1,sin(a)=1
sin(a)=0,sin(a)=−33​​,sin(a)=33​​,sin(a)=−1,sin(a)=1
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
sin(a)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
解 a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
sin(a)=−33​​:a=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn
sin(a)=−33​​
使用反三角函数性质
sin(a)=−33​​
sin(a)=−33​​的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πna=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn
a=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn
sin(a)=33​​:a=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn
sin(a)=33​​
使用反三角函数性质
sin(a)=33​​
sin(a)=33​​的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πna=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn
a=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn
sin(a)=−1:a=23π​+2πn
sin(a)=−1
sin(a)=−1的通解
sin(x) 周期表(周期为 2πn"):
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=23π​+2πn
a=23π​+2πn
sin(a)=1:a=2π​+2πn
sin(a)=1
sin(a)=1的通解
sin(x) 周期表(周期为 2πn"):
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=2π​+2πn
a=2π​+2πn
合并所有解a=2πn,a=π+2πn,a=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn,a=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn,a=23π​+2πn,a=2π​+2πn
以小数形式表示解a=2πn,a=π+2πn,a=−0.61547…+2πn,a=π+0.61547…+2πn,a=0.61547…+2πn,a=π−0.61547…+2πn,a=23π​+2πn,a=2π​+2πn

作图

Sorry, your browser does not support this application
查看交互式图形

流行的例子

tan(b)= 1/2tan(b)=21​cos^2(x)-cos(x)+1=sin^2(x)cos2(x)−cos(x)+1=sin2(x)sin^{22}(x)=4sin^2(x)cos^2(x)sin22(x)=4sin2(x)cos2(x)sin(x)=(4.1)/(7.1)sin(x)=7.14.1​(1+cos^2(a))sin^2(a)=1(1+cos2(a))sin2(a)=1
学习工具人工智能数学求解器AI Chat工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序
公司关于 Symbolab日志帮助
合法的隐私权Service TermsCookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024