Lời Giải
Máy Tính Tích PhânMáy Tính Đạo HàmMáy Tính Đại SốMáy Tính Ma TrậnHơn...
Vẽ đồ thị
Biểu đồ đườngĐồ thị hàm mũĐồ thị bậc haiĐồ thị sinHơn...
Máy tính
Máy tính BMIMáy tính lãi képMáy tính tỷ lệ phần trămMáy tính gia tốcHơn...
Hình học
Máy tính Định Lý PytagoMáy Tính Diện Tích Hình TrònMáy tính tam giác cânMáy tính tam giácHơn...
AI Chat
Công cụ
Sổ ghi chépNhómBảng Ghi ChúBảng tínhThực HànhXác thực
vi
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Phổ biến Lượng giác >

cos^2(a)= 2/(3sin(a))

  • Tiền Đại Số
  • Đại số
  • Tiền Giải Tích
  • Giải tích
  • Các hàm số
  • Đại số tuyến tính
  • Lượng giác
  • Thống kê
  • Hóa học
  • Quy đổi

Lời Giải

cos2(a)=3sin(a)2​

Lời Giải

Kho^ngcoˊnghiệmchoa∈R
Các bước giải pháp
cos2(a)=3sin(a)2​
Trừ 3sin(a)2​ cho cả hai bêncos2(a)−3sin(a)2​=0
Rút gọn cos2(a)−3sin(a)2​:3sin(a)3cos2(a)sin(a)−2​
cos2(a)−3sin(a)2​
Chuyển phần tử thành phân số: cos2(a)=3sin(a)cos2(a)3sin(a)​=3sin(a)cos2(a)⋅3sin(a)​−3sin(a)2​
Vì các mẫu số bằng nhau, cộng các phân số: ca​±cb​=ca±b​=3sin(a)cos2(a)⋅3sin(a)−2​
3sin(a)3cos2(a)sin(a)−2​=0
g(x)f(x)​=0⇒f(x)=03cos2(a)sin(a)−2=0
Viết lại bằng cách sử dụng hằng đẳng thức lượng giác
−2+3cos2(a)sin(a)
Sử dụng hằng đẳng thức Pitago: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−2+3(1−sin2(a))sin(a)
−2+(1−sin2(a))⋅3sin(a)=0
Giải quyết bằng cách thay thế
−2+(1−sin2(a))⋅3sin(a)=0
Cho: sin(a)=u−2+(1−u2)⋅3u=0
−2+(1−u2)⋅3u=0:u≈−1.24001…
−2+(1−u2)⋅3u=0
Mở rộng −2+(1−u2)⋅3u:−2+3u−3u3
−2+(1−u2)⋅3u
=−2+3u(1−u2)
Mở rộng 3u(1−u2):3u−3u3
3u(1−u2)
Áp dụng luật phân phối: a(b−c)=ab−aca=3u,b=1,c=u2=3u⋅1−3uu2
=3⋅1⋅u−3u2u
Rút gọn 3⋅1⋅u−3u2u:3u−3u3
3⋅1⋅u−3u2u
3⋅1⋅u=3u
3⋅1⋅u
Nhân các số: 3⋅1=3=3u
3u2u=3u3
3u2u
Áp dụng quy tắc số mũ: ab⋅ac=ab+cu2u=u2+1=3u2+1
Thêm các số: 2+1=3=3u3
=3u−3u3
=3u−3u3
=−2+3u−3u3
−2+3u−3u3=0
Viết ở dạng chuẩn an​xn+…+a1​x+a=0−3u3+3u−2=0
Tìm một lời giải cho −3u3+3u−2=0 bằng Newton-Raphson:u≈−1.24001…
−3u3+3u−2=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=−3u3+3u−2
Tìm f′(u):−9u2+3
dud​(−3u3+3u−2)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=−dud​(3u3)+dud​(3u)−dud​(2)
dud​(3u3)=9u2
dud​(3u3)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=3dud​(u3)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=3⋅3u3−1
Rút gọn=9u2
dud​(3u)=3
dud​(3u)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=3dudu​
Áp dụng đạo hàm chung: dudu​=1=3⋅1
Rút gọn=3
dud​(2)=0
dud​(2)
Đạo hàm của một hằng số: dxd​(a)=0=0
=−9u2+3−0
Rút gọn=−9u2+3
Cho u0​=−1Tính un+1​ cho đến Δun+1​<0.000001
u1​=−1.33333…:Δu1​=0.33333…
f(u0​)=−3(−1)3+3(−1)−2=−2f′(u0​)=−9(−1)2+3=−6u1​=−1.33333…
Δu1​=∣−1.33333…−(−1)∣=0.33333…Δu1​=0.33333…
u2​=−1.24786…:Δu2​=0.08547…
f(u1​)=−3(−1.33333…)3+3(−1.33333…)−2=1.11111…f′(u1​)=−9(−1.33333…)2+3=−13u2​=−1.24786…
Δu2​=∣−1.24786…−(−1.33333…)∣=0.08547…Δu2​=0.08547…
u3​=−1.24007…:Δu3​=0.00778…
f(u2​)=−3(−1.24786…)3+3(−1.24786…)−2=0.08578…f′(u2​)=−9(−1.24786…)2+3=−11.01446…u3​=−1.24007…
Δu3​=∣−1.24007…−(−1.24786…)∣=0.00778…Δu3​=0.00778…
u4​=−1.24001…:Δu4​=0.00006…
f(u3​)=−3(−1.24007…)3+3(−1.24007…)−2=0.00067…f′(u3​)=−9(−1.24007…)2+3=−10.84006…u4​=−1.24001…
Δu4​=∣−1.24001…−(−1.24007…)∣=0.00006…Δu4​=0.00006…
u5​=−1.24001…:Δu5​=4.05057E−9
f(u4​)=−3(−1.24001…)3+3(−1.24001…)−2=4.39028E−8f′(u4​)=−9(−1.24001…)2+3=−10.83866…u5​=−1.24001…
Δu5​=∣−1.24001…−(−1.24001…)∣=4.05057E−9Δu5​=4.05057E−9
u≈−1.24001…
Áp dụng phép chia số lớn:u+1.24001…−3u3+3u−2​=−3u2+3.72003…u−1.61288…
−3u2+3.72003…u−1.61288…≈0
Tìm một lời giải cho −3u2+3.72003…u−1.61288…=0 bằng Newton-Raphson:Không có nghiệm cho u∈R
−3u2+3.72003…u−1.61288…=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=−3u2+3.72003…u−1.61288…
Tìm f′(u):−6u+3.72003…
dud​(−3u2+3.72003…u−1.61288…)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=−dud​(3u2)+dud​(3.72003…u)−dud​(1.61288…)
dud​(3u2)=6u
dud​(3u2)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=3dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=3⋅2u2−1
Rút gọn=6u
dud​(3.72003…u)=3.72003…
dud​(3.72003…u)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=3.72003…dudu​
Áp dụng đạo hàm chung: dudu​=1=3.72003…⋅1
Rút gọn=3.72003…
dud​(1.61288…)=0
dud​(1.61288…)
Đạo hàm của một hằng số: dxd​(a)=0=0
=−6u+3.72003…−0
Rút gọn=−6u+3.72003…
Cho u0​=0Tính un+1​ cho đến Δun+1​<0.000001
u1​=0.43356…:Δu1​=0.43356…
f(u0​)=−3⋅02+3.72003…⋅0−1.61288…=−1.61288…f′(u0​)=−6⋅0+3.72003…=3.72003…u1​=0.43356…
Δu1​=∣0.43356…−0∣=0.43356…Δu1​=0.43356…
u2​=0.93770…:Δu2​=0.50413…
f(u1​)=−3⋅0.43356…2+3.72003…⋅0.43356…−1.61288…=−0.56394…f′(u1​)=−6⋅0.43356…+3.72003…=1.11862…u2​=0.93770…
Δu2​=∣0.93770…−0.43356…∣=0.50413…Δu2​=0.50413…
u3​=0.53771…:Δu3​=0.39999…
f(u2​)=−3⋅0.93770…2+3.72003…⋅0.93770…−1.61288…=−0.76246…f′(u2​)=−6⋅0.93770…+3.72003…=−1.90620…u3​=0.53771…
Δu3​=∣0.53771…−0.93770…∣=0.39999…Δu3​=0.39999…
u4​=1.50982…:Δu4​=0.97210…
f(u3​)=−3⋅0.53771…2+3.72003…⋅0.53771…−1.61288…=−0.47998…f′(u3​)=−6⋅0.53771…+3.72003…=0.49375…u4​=1.50982…
Δu4​=∣1.50982…−0.53771…∣=0.97210…Δu4​=0.97210…
u5​=0.97881…:Δu5​=0.53100…
f(u4​)=−3⋅1.50982…2+3.72003…⋅1.50982…−1.61288…=−2.83498…f′(u4​)=−6⋅1.50982…+3.72003…=−5.33890…u5​=0.97881…
Δu5​=∣0.97881…−1.50982…∣=0.53100…Δu5​=0.53100…
u6​=0.58589…:Δu6​=0.39291…
f(u5​)=−3⋅0.97881…2+3.72003…⋅0.97881…−1.61288…=−0.84590…f′(u5​)=−6⋅0.97881…+3.72003…=−2.15286…u6​=0.58589…
Δu6​=∣0.58589…−0.97881…∣=0.39291…Δu6​=0.39291…
u7​=2.84908…:Δu7​=2.26318…
f(u6​)=−3⋅0.58589…2+3.72003…⋅0.58589…−1.61288…=−0.46315…f′(u6​)=−6⋅0.58589…+3.72003…=0.20464…u7​=2.84908…
Δu7​=∣2.84908…−0.58589…∣=2.26318…Δu7​=2.26318…
u8​=1.70017…:Δu8​=1.14890…
f(u7​)=−3⋅2.84908…2+3.72003…⋅2.84908…−1.61288…=−15.36607…f′(u7​)=−6⋅2.84908…+3.72003…=−13.37448…u8​=1.70017…
Δu8​=∣1.70017…−2.84908…∣=1.14890…Δu8​=1.14890…
u9​=1.08916…:Δu9​=0.61101…
f(u8​)=−3⋅1.70017…2+3.72003…⋅1.70017…−1.61288…=−3.95997…f′(u8​)=−6⋅1.70017…+3.72003…=−6.48103…u9​=1.08916…
Δu9​=∣1.08916…−1.70017…∣=0.61101…Δu9​=0.61101…
u10​=0.69129…:Δu10​=0.39787…
f(u9​)=−3⋅1.08916…2+3.72003…⋅1.08916…−1.61288…=−1.12000…f′(u9​)=−6⋅1.08916…+3.72003…=−2.81496…u10​=0.69129…
Δu10​=∣0.69129…−1.08916…∣=0.39787…Δu10​=0.39787…
u11​=−0.41903…:Δu11​=1.11032…
f(u10​)=−3⋅0.69129…2+3.72003…⋅0.69129…−1.61288…=−0.47491…f′(u10​)=−6⋅0.69129…+3.72003…=−0.42772…u11​=−0.41903…
Δu11​=∣−0.41903…−0.69129…∣=1.11032…Δu11​=1.11032…
Không thể tìm được lời giải
Giải pháp làu≈−1.24001…
Thay thế lại u=sin(a)sin(a)≈−1.24001…
sin(a)≈−1.24001…
sin(a)=−1.24001…:Không có nghiệm
sin(a)=−1.24001…
−1≤sin(x)≤1Kho^ngcoˊnghiệm
Kết hợp tất cả các cách giảiKho^ngcoˊnghiệmchoa∈R

Đồ Thị

Sorry, your browser does not support this application
Xem đồ thị tương tác

Ví dụ phổ biến

5cos(5x)=25cos(5x)=24sin(x)-sin^3(x)-1=04sin(x)−sin3(x)−1=01-tan(a)=(-1)/31−tan(a)=3−1​tan^2(x)+cos^2(x)-1=0tan2(x)+cos2(x)−1=0cot^3(x)+cot(x)=0cot3(x)+cot(x)=0
Công cụ học tậpTrình giải toán AIAI ChatBảng tínhThực HànhBảng Ghi ChúMáy tínhMáy Tính Vẽ Đồ ThịMáy Tính Hình HọcXác minh giải pháp
Ứng dụngỨng dụng Symbolab (Android)Máy Tính Vẽ Đồ Thị (Android)Thực Hành (Android)Ứng dụng Symbolab (iOS)Máy Tính Vẽ Đồ Thị (iOS)Thực Hành (iOS)Tiện ích mở rộng Chrome
Công tyGiới thiệu về SymbolabBlogTrợ Giúp
Hợp phápQuyền Riêng TưService TermsChính sách cookieCài đặt cookieKhông bán hoặc chia sẻ thông tin cá nhân của tôiBản quyền, Nguyên tắc cộng đồng, DSA và các tài nguyên pháp lý khácTrung tâm pháp lý Learneo
Truyền thông xã hội
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024