解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

2cos(3x)=1+cos(x)

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

2cos(3x)=1+cos(x)

解

x=2πn,x=1.71777…+2πn,x=−1.71777…+2πn,x=2.59356…+2πn,x=−2.59356…+2πn
+1
度
x=0∘+360∘n,x=98.42105…∘+360∘n,x=−98.42105…∘+360∘n,x=148.60028…∘+360∘n,x=−148.60028…∘+360∘n
解答ステップ
2cos(3x)=1+cos(x)
両辺から1+cos(x)を引く2cos(3x)−1−cos(x)=0
三角関数の公式を使用して書き換える
−1−cos(x)+2cos(3x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
三角関数の公式を使用して書き換える
cos(3x)
書き換え=cos(2x+x)
角の和の公式を使用する: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
2倍角の公式を使用: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
簡素化 cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
指数の規則を適用する: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
数を足す:1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
2倍角の公式を使用: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
拡張 (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
拡張 cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
分配法則を適用する: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
簡素化 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
指数の規則を適用する: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
数を足す:2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
乗算:1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
拡張 −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
分配法則を適用する: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
マイナス・プラスの規則を適用する−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
簡素化 −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
数を乗じる:2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
指数の規則を適用する: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
数を足す:2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
簡素化 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
条件のようなグループ=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
類似した元を足す:2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
類似した元を足す:−cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−1−cos(x)+2(4cos3(x)−3cos(x))
簡素化 −1−cos(x)+2(4cos3(x)−3cos(x)):−7cos(x)+8cos3(x)−1
−1−cos(x)+2(4cos3(x)−3cos(x))
拡張 2(4cos3(x)−3cos(x)):8cos3(x)−6cos(x)
2(4cos3(x)−3cos(x))
分配法則を適用する: a(b−c)=ab−aca=2,b=4cos3(x),c=3cos(x)=2⋅4cos3(x)−2⋅3cos(x)
簡素化 2⋅4cos3(x)−2⋅3cos(x):8cos3(x)−6cos(x)
2⋅4cos3(x)−2⋅3cos(x)
数を乗じる:2⋅4=8=8cos3(x)−2⋅3cos(x)
数を乗じる:2⋅3=6=8cos3(x)−6cos(x)
=8cos3(x)−6cos(x)
=−1−cos(x)+8cos3(x)−6cos(x)
簡素化 −1−cos(x)+8cos3(x)−6cos(x):−7cos(x)+8cos3(x)−1
−1−cos(x)+8cos3(x)−6cos(x)
条件のようなグループ=−cos(x)+8cos3(x)−6cos(x)−1
類似した元を足す:−cos(x)−6cos(x)=−7cos(x)=−7cos(x)+8cos3(x)−1
=−7cos(x)+8cos3(x)−1
=−7cos(x)+8cos3(x)−1
−1−7cos(x)+8cos3(x)=0
置換で解く
−1−7cos(x)+8cos3(x)=0
仮定:cos(x)=u−1−7u+8u3=0
−1−7u+8u3=0:u=1,u=4−2+2​​,u=−42+2​​
−1−7u+8u3=0
標準的な形式で書く an​xn+…+a1​x+a0​=08u3−7u−1=0
因数 8u3−7u−1:(u−1)(8u2+8u+1)
8u3−7u−1
有理根定理を使用する
a0​=1,an​=8
a0​:1の除数, an​:1,2,4,8の除数
ゆえに次の有理数をチェックする:±1,2,4,81​
11​ は式の累乗根なので u−1 をくくり出す
=(u−1)u−18u3−7u−1​
u−18u3−7u−1​=8u2+8u+1
u−18u3−7u−1​
割る u−18u3−7u−1​:u−18u3−7u−1​=8u2+u−18u2−7u−1​
分子 8u3−7u−1
と除数 u−1の主係数で割る: u8u3​=8u2
商=8u2
u−1に8u2を乗じる:8u3−8u28u3−8u2を8u3−7u−1から引いて新しい余りを得る余り=8u2−7u−1
このためu−18u3−7u−1​=8u2+u−18u2−7u−1​
=8u2+u−18u2−7u−1​
割る u−18u2−7u−1​:u−18u2−7u−1​=8u+u−1u−1​
分子 8u2−7u−1
と除数 u−1の主係数で割る: u8u2​=8u
商=8u
u−1に8uを乗じる:8u2−8u8u2−8uを8u2−7u−1から引いて新しい余りを得る余り=u−1
このためu−18u2−7u−1​=8u+u−1u−1​
=8u2+8u+u−1u−1​
割る u−1u−1​:u−1u−1​=1
分子 u−1
と除数 u−1の主係数で割る: uu​=1
商=1
u−1に1を乗じる:u−1u−1をu−1から引いて新しい余りを得る余り=0
このためu−1u−1​=1
=8u2+8u+1
=(u−1)(8u2+8u+1)
(u−1)(8u2+8u+1)=0
零因子の原則を使用:ab=0ならば a=0または b=0u−1=0or8u2+8u+1=0
解く u−1=0:u=1
u−1=0
1を右側に移動します
u−1=0
両辺に1を足すu−1+1=0+1
簡素化u=1
u=1
解く 8u2+8u+1=0:u=4−2+2​​,u=−42+2​​
8u2+8u+1=0
解くとthe二次式
8u2+8u+1=0
二次Equationの公式:
次の場合: a=8,b=8,c=1u1,2​=2⋅8−8±82−4⋅8⋅1​​
u1,2​=2⋅8−8±82−4⋅8⋅1​​
82−4⋅8⋅1​=42​
82−4⋅8⋅1​
数を乗じる:4⋅8⋅1=32=82−32​
82=64=64−32​
数を引く:64−32=32=32​
以下の素因数分解: 32:25
32
32232=16⋅2で割る =2⋅16
16216=8⋅2で割る =2⋅2⋅8
828=4⋅2で割る =2⋅2⋅2⋅4
424=2⋅2で割る =2⋅2⋅2⋅2⋅2
2 は素数なので, さらに因数分解はできない=2⋅2⋅2⋅2⋅2
=25
=25​
指数の規則を適用する: ab+c=ab⋅ac=24⋅2​
累乗根の規則を適用する: nab​=na​nb​=2​24​
累乗根の規則を適用する: nam​=anm​24​=224​=22=222​
改良=42​
u1,2​=2⋅8−8±42​​
解を分離するu1​=2⋅8−8+42​​,u2​=2⋅8−8−42​​
u=2⋅8−8+42​​:4−2+2​​
2⋅8−8+42​​
数を乗じる:2⋅8=16=16−8+42​​
因数 −8+42​:4(−2+2​)
−8+42​
書き換え=−4⋅2+42​
共通項をくくり出す 4=4(−2+2​)
=164(−2+2​)​
共通因数を約分する:4=4−2+2​​
u=2⋅8−8−42​​:−42+2​​
2⋅8−8−42​​
数を乗じる:2⋅8=16=16−8−42​​
因数 −8−42​:−4(2+2​)
−8−42​
書き換え=−4⋅2−42​
共通項をくくり出す 4=−4(2+2​)
=−164(2+2​)​
共通因数を約分する:4=−42+2​​
二次equationの解:u=4−2+2​​,u=−42+2​​
解答はu=1,u=4−2+2​​,u=−42+2​​
代用を戻す u=cos(x)cos(x)=1,cos(x)=4−2+2​​,cos(x)=−42+2​​
cos(x)=1,cos(x)=4−2+2​​,cos(x)=−42+2​​
cos(x)=1:x=2πn
cos(x)=1
以下の一般解 cos(x)=1
cos(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
解く x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=4−2+2​​:x=arccos(4−2+2​​)+2πn,x=−arccos(4−2+2​​)+2πn
cos(x)=4−2+2​​
三角関数の逆数プロパティを適用する
cos(x)=4−2+2​​
以下の一般解 cos(x)=4−2+2​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(4−2+2​​)+2πn,x=−arccos(4−2+2​​)+2πn
x=arccos(4−2+2​​)+2πn,x=−arccos(4−2+2​​)+2πn
cos(x)=−42+2​​:x=arccos(−42+2​​)+2πn,x=−arccos(−42+2​​)+2πn
cos(x)=−42+2​​
三角関数の逆数プロパティを適用する
cos(x)=−42+2​​
以下の一般解 cos(x)=−42+2​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−42+2​​)+2πn,x=−arccos(−42+2​​)+2πn
x=arccos(−42+2​​)+2πn,x=−arccos(−42+2​​)+2πn
すべての解を組み合わせるx=2πn,x=arccos(4−2+2​​)+2πn,x=−arccos(4−2+2​​)+2πn,x=arccos(−42+2​​)+2πn,x=−arccos(−42+2​​)+2πn
10進法形式で解を証明するx=2πn,x=1.71777…+2πn,x=−1.71777…+2πn,x=2.59356…+2πn,x=−2.59356…+2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

sqrt(2)csc(x)-2=02​csc(x)−2=090=sin(x)90=sin(x)sin(2x)csc(x)=1,0<= x<= 2pisin(2x)csc(x)=1,0≤x≤2πtan(b)=sqrt(3)tan(b)=3​sin(x)= 12/16sin(x)=1612​
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024