Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos^2(x)+5sin^2(x)=2

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos2(x)+5sin2(x)=2

Lösung

x=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn
+1
Grad
x=30∘+360∘n,x=150∘+360∘n,x=210∘+360∘n,x=330∘+360∘n
Schritte zur Lösung
cos2(x)+5sin2(x)=2
Subtrahiere 2 von beiden Seitencos2(x)+5sin2(x)−2=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
−2+cos2(x)+5sin2(x)
Verwende die Pythagoreische Identität: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−2+1−sin2(x)+5sin2(x)
Vereinfache −2+1−sin2(x)+5sin2(x):4sin2(x)−1
−2+1−sin2(x)+5sin2(x)
Addiere gleiche Elemente: −sin2(x)+5sin2(x)=4sin2(x)=−2+1+4sin2(x)
Addiere/Subtrahiere die Zahlen: −2+1=−1=4sin2(x)−1
=4sin2(x)−1
−1+4sin2(x)=0
Löse mit Substitution
−1+4sin2(x)=0
Angenommen: sin(x)=u−1+4u2=0
−1+4u2=0:u=21​,u=−21​
−1+4u2=0
Verschiebe 1auf die rechte Seite
−1+4u2=0
Füge 1 zu beiden Seiten hinzu−1+4u2+1=0+1
Vereinfache4u2=1
4u2=1
Teile beide Seiten durch 4
4u2=1
Teile beide Seiten durch 444u2​=41​
Vereinfacheu2=41​
u2=41​
Für x2=f(a) sind die Lösungen x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Wende Radikal Regel an: nba​​=nb​na​​, angenommen a≥0,b≥0=4​1​​
4​=2
4​
Faktorisiere die Zahl: 4=22=22​
Wende Radikal Regel an: nan​=a22​=2=2
=21​​
Wende Regel an 1​=1=21​
−41​​=−21​
−41​​
Vereinfache 41​​:21​​
41​​
Wende Radikal Regel an: nba​​=nb​na​​, angenommen a≥0,b≥0=4​1​​
4​=2
4​
Faktorisiere die Zahl: 4=22=22​
Wende Radikal Regel an: nan​=a22​=2=2
=21​​
=−21​​
Wende Regel an 1​=1=−21​
u=21​,u=−21​
Setze in u=sin(x)einsin(x)=21​,sin(x)=−21​
sin(x)=21​,sin(x)=−21​
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
Allgemeine Lösung für sin(x)=21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
Allgemeine Lösung für sin(x)=−21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Kombiniere alle Lösungenx=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

(sin(x))^{(sin(x))}= 1/(sqrt(2))(sin(x))(sin(x))=2​1​(d^2-4)=cos^2(x)(d2−4)=cos2(x)cos(3θ)=4cos(3θ)-3cos(θ)cos(3θ)=4cos(3θ)−3cos(θ)sin^2(x)-7sin(x)=0sin2(x)−7sin(x)=0sin(x)=(48sin(69))/(47.5)sin(x)=47.548sin(69∘)​
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024