해법
(1+4cos(θ))2=(3sin(θ))
해법
θ=1.49220…+2πn,θ=2.15388…+2πn
+1
도
θ=85.49705…∘+360∘n,θ=123.40880…∘+360∘n솔루션 단계
(1+4cos(θ))2=(3sin(θ))
양쪽을 제곱((1+4cos(θ))2)2=(3sin(θ))2
빼다 (3sin(θ))2 양쪽에서(1+4cos(θ))4−3sin2(θ)=0
삼각성을 사용하여 다시 쓰기
(1+4cos(θ))4−3sin2(θ)
피타고라스 정체성 사용: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(1+4cos(θ))4−3(1−cos2(θ))
(1+4cos(θ))4−3(1−cos2(θ))간소화하다 :256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
(1+4cos(θ))4−3(1−cos2(θ))
(1+4cos(θ))4:1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)
이항 정리 적용: (a+b)n=i=0∑n(in)a(n−i)bia=1,b=4cos(θ)
=i=0∑4(i4)⋅1(4−i)(4cos(θ))i
합계 확장
(in)=i!(n−i)!n!
i=0:0!(4−0)!4!14(4cos(θ))0
i=1:1!(4−1)!4!13(4cos(θ))1
i=2:2!(4−2)!4!12(4cos(θ))2
i=3:3!(4−3)!4!11(4cos(θ))3
i=4:4!(4−4)!4!10(4cos(θ))4
=0!(4−0)!4!⋅14(4cos(θ))0+1!(4−1)!4!⋅13(4cos(θ))1+2!(4−2)!4!⋅12(4cos(θ))2+3!(4−3)!4!⋅11(4cos(θ))3+4!(4−4)!4!⋅10(4cos(θ))4
=0!(4−0)!4!⋅14(4cos(θ))0+1!(4−1)!4!⋅13(4cos(θ))1+2!(4−2)!4!⋅12(4cos(θ))2+3!(4−3)!4!⋅11(4cos(θ))3+4!(4−4)!4!⋅10(4cos(θ))4
0!(4−0)!4!⋅14(4cos(θ))0=1
0!(4−0)!4!⋅14(4cos(θ))0
규칙 적용 1a=114=1=1⋅0!(4−0)!4!(4cos(θ))0
규칙 적용 a0=1,a=0(4cos(θ))0=1=1⋅1⋅0!(4−0)!4!
0!(4−0)!4!=1
0!(4−0)!4!
0!(4−0)!=4!
0!(4−0)!
숫자를 빼세요: 4−0=4=0!⋅4!
요인 규칙 적용: 0!=1=1⋅4!
곱하다: 1⋅4!=4!=4!
=4!4!
규칙 적용 aa=1=1
=1⋅1⋅1
숫자를 곱하시오: 1⋅1⋅1=1=1
1!(4−1)!4!⋅13(4cos(θ))1단순화하세요:16cos(θ)
1!(4−1)!4!⋅13(4cos(θ))1
규칙 적용 1a=113=1=1⋅1!(4−1)!4!(4cos(θ))1
규칙 적용 a1=a(4cos(θ))1=4cos(θ)=1⋅4⋅1!(4−1)!4!cos(θ)
다중 분수: a⋅cb=ca⋅b=1⋅1!(4−1)!4⋅4!cos(θ)
1!(4−1)!4!⋅4cos(θ)단순화하세요:16cos(θ)
1!(4−1)!4!⋅4cos(θ)
숫자를 빼세요: 4−1=3=1!⋅3!4⋅4!cos(θ)
요인 취소: (n−m)!n!=n⋅(n−1)⋯(n−m+1),n>m3!4!=4=1!4⋅4cos(θ)
다듬다=1!16cos(θ)
요인 규칙 적용: n!=1⋅2⋅3⋅…⋅n1!=1=116cos(θ)
규칙 적용 1a=a=16cos(θ)
=1⋅16cos(θ)
숫자를 곱하시오: 1⋅16=16=16cos(θ)
2!(4−2)!4!⋅12(4cos(θ))2단순화하세요:96cos2(θ)
2!(4−2)!4!⋅12(4cos(θ))2
규칙 적용 1a=112=1=1⋅2!(4−2)!4!(4cos(θ))2
다중 분수: a⋅cb=ca⋅b=1⋅2!(4−2)!4!(4cos(θ))2
2!(4−2)!4!(4cos(θ))2단순화하세요:96cos2(θ)
2!(4−2)!4!(4cos(θ))2
숫자를 빼세요: 4−2=2=2!⋅2!4!(4cos(θ))2
요인 취소: (n−m)!n!=n⋅(n−1)⋯(n−m+1),n>m2!4!=4⋅3=2!4⋅3(4cos(θ))2
다듬다=2!12(4cos(θ))2
(4cos(θ))2=42cos2(θ)
(4cos(θ))2
지수 규칙 적용: (a⋅b)n=anbn=42cos2(θ)
=2!42⋅12cos2(θ)
12⋅42cos2(θ)=192cos2(θ)
12⋅42cos2(θ)
42=16=12⋅16cos2(θ)
숫자를 곱하시오: 12⋅16=192=192cos2(θ)
=2!192cos2(θ)
2!=2
2!
요인 규칙 적용: n!=1⋅2⋅3⋅…⋅n2!=1⋅2=1⋅2
숫자를 곱하시오: 1⋅2=2=2
=2192cos2(θ)
숫자를 나눕니다: 2192=96=96cos2(θ)
=1⋅96cos2(θ)
숫자를 곱하시오: 1⋅96=96=96cos2(θ)
3!(4−3)!4!⋅11(4cos(θ))3단순화하세요:256cos3(θ)
3!(4−3)!4!⋅11(4cos(θ))3
규칙 적용 1a=111=1=1⋅3!(4−3)!4!(4cos(θ))3
다중 분수: a⋅cb=ca⋅b=1⋅3!(4−3)!4!(4cos(θ))3
3!(4−3)!4!(4cos(θ))3단순화하세요:256cos3(θ)
3!(4−3)!4!(4cos(θ))3
숫자를 빼세요: 4−3=1=3!⋅1!4!(4cos(θ))3
요인 취소: (n−m)!n!=n⋅(n−1)⋯(n−m+1),n>m3!4!=4=1!4(4cos(θ))3
(4cos(θ))3=43cos3(θ)
(4cos(θ))3
지수 규칙 적용: (a⋅b)n=anbn=43cos3(θ)
=1!43⋅4cos3(θ)
4⋅43cos3(θ)=44cos3(θ)
4⋅43cos3(θ)
지수 규칙 적용: ab⋅ac=ab+c4⋅43=41+3=41+3cos3(θ)
숫자 추가: 1+3=4=44cos3(θ)
=1!44cos3(θ)
44=256=1!256cos3(θ)
요인 규칙 적용: n!=1⋅2⋅3⋅…⋅n1!=1=1256cos3(θ)
규칙 적용 1a=a=256cos3(θ)
=1⋅256cos3(θ)
숫자를 곱하시오: 1⋅256=256=256cos3(θ)
4!(4−4)!4!⋅10(4cos(θ))4단순화하세요:256cos4(θ)
4!(4−4)!4!⋅10(4cos(θ))4
규칙 적용 1a=110=1=1⋅4!(4−4)!4!(4cos(θ))4
다중 분수: a⋅cb=ca⋅b=1⋅4!(4−4)!4!(4cos(θ))4
공통 요인 취소: 4!=1⋅(4−4)!(4cos(θ))4
(4−4)!(4cos(θ))4단순화하세요:256cos4(θ)
(4−4)!(4cos(θ))4
(4−4)!=1
(4−4)!
숫자를 빼세요: 4−4=0=0!
요인 규칙 적용: 0!=1=1
=1(4cos(θ))4
규칙 적용 1a=a=(4cos(θ))4
지수 규칙 적용: (a⋅b)n=anbn=44cos4(θ)
44=256=256cos4(θ)
=1⋅256cos4(θ)
숫자를 곱하시오: 1⋅256=256=256cos4(θ)
=1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)
=1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3(1−cos2(θ))
−3(1−cos2(θ))확대한다:−3+3cos2(θ)
−3(1−cos2(θ))
분배 법칙 적용: a(b−c)=ab−aca=−3,b=1,c=cos2(θ)=−3⋅1−(−3)cos2(θ)
마이너스 플러스 규칙 적용−(−a)=a=−3⋅1+3cos2(θ)
숫자를 곱하시오: 3⋅1=3=−3+3cos2(θ)
=1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3+3cos2(θ)
1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3+3cos2(θ)단순화하세요:256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3+3cos2(θ)
집단적 용어=16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)+3cos2(θ)+1−3
유사 요소 추가: 96cos2(θ)+3cos2(θ)=99cos2(θ)=16cos(θ)+99cos2(θ)+256cos3(θ)+256cos4(θ)+1−3
숫자 더하기/ 빼기: 1−3=−2=256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
=256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
=256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
−2+16cos(θ)+256cos3(θ)+256cos4(θ)+99cos2(θ)=0
대체로 해결
−2+16cos(θ)+256cos3(θ)+256cos4(θ)+99cos2(θ)=0
하게: cos(θ)=u−2+16u+256u3+256u4+99u2=0
−2+16u+256u3+256u4+99u2=0:u≈0.07851…,u≈−0.55060…
−2+16u+256u3+256u4+99u2=0
표준 양식으로 작성 anxn+…+a1x+a0=0256u4+256u3+99u2+16u−2=0
다음을 위한 하나의 솔루션 찾기 256u4+256u3+99u2+16u−2=0 뉴턴-랩슨을 이용하여:u≈0.07851…
256u4+256u3+99u2+16u−2=0
뉴턴-랩슨 근사 정의
f(u)=256u4+256u3+99u2+16u−2
f′(u)찾다 :1024u3+768u2+198u+16
dud(256u4+256u3+99u2+16u−2)
합계/차이 규칙 적용: (f±g)′=f′±g′=dud(256u4)+dud(256u3)+dud(99u2)+dud(16u)−dud(2)
dud(256u4)=1024u3
dud(256u4)
정수를 빼라: (a⋅f)′=a⋅f′=256dud(u4)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=256⋅4u4−1
단순화=1024u3
dud(256u3)=768u2
dud(256u3)
정수를 빼라: (a⋅f)′=a⋅f′=256dud(u3)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=256⋅3u3−1
단순화=768u2
dud(99u2)=198u
dud(99u2)
정수를 빼라: (a⋅f)′=a⋅f′=99dud(u2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=99⋅2u2−1
단순화=198u
dud(16u)=16
dud(16u)
정수를 빼라: (a⋅f)′=a⋅f′=16dudu
공통 도함수 적용: dudu=1=16⋅1
단순화=16
dud(2)=0
dud(2)
상수의 도함수: dxd(a)=0=0
=1024u3+768u2+198u+16−0
단순화=1024u3+768u2+198u+16
렛 u0=0계산하다 un+1 까지 Δun+1<0.000001
u1=0.125:Δu1=0.125
f(u0)=256⋅04+256⋅03+99⋅02+16⋅0−2=−2f′(u0)=1024⋅03+768⋅02+198⋅0+16=16u1=0.125
Δu1=∣0.125−0∣=0.125Δu1=0.125
u2=0.08647…:Δu2=0.03852…
f(u1)=256⋅0.1254+256⋅0.1253+99⋅0.1252+16⋅0.125−2=2.109375f′(u1)=1024⋅0.1253+768⋅0.1252+198⋅0.125+16=54.75u2=0.08647…
Δu2=∣0.08647…−0.125∣=0.03852…Δu2=0.03852…
u3=0.07878…:Δu3=0.00768…
f(u2)=256⋅0.08647…4+256⋅0.08647…3+99⋅0.08647…2+16⋅0.08647…−2=0.30367…f′(u2)=1024⋅0.08647…3+768⋅0.08647…2+198⋅0.08647…+16=39.52642…u3=0.07878…
Δu3=∣0.07878…−0.08647…∣=0.00768…Δu3=0.00768…
u4=0.07851…:Δu4=0.00027…
f(u3)=256⋅0.07878…4+256⋅0.07878…3+99⋅0.07878…2+16⋅0.07878…−2=0.01028…f′(u3)=1024⋅0.07878…3+768⋅0.07878…2+198⋅0.07878…+16=36.86880…u4=0.07851…
Δu4=∣0.07851…−0.07878…∣=0.00027…Δu4=0.00027…
u5=0.07851…:Δu5=3.57619E−7
f(u4)=256⋅0.07851…4+256⋅0.07851…3+99⋅0.07851…2+16⋅0.07851…−2=0.00001…f′(u4)=1024⋅0.07851…3+768⋅0.07851…2+198⋅0.07851…+16=36.77455…u5=0.07851…
Δu5=∣0.07851…−0.07851…∣=3.57619E−7Δu5=3.57619E−7
u≈0.07851…
긴 나눗셈 적용:u−0.07851…256u4+256u3+99u2+16u−2=256u3+276.09864…u2+120.67659…u+25.47435…
256u3+276.09864…u2+120.67659…u+25.47435…≈0
다음을 위한 하나의 솔루션 찾기 256u3+276.09864…u2+120.67659…u+25.47435…=0 뉴턴-랩슨을 이용하여:u≈−0.55060…
256u3+276.09864…u2+120.67659…u+25.47435…=0
뉴턴-랩슨 근사 정의
f(u)=256u3+276.09864…u2+120.67659…u+25.47435…
f′(u)찾다 :768u2+552.19728…u+120.67659…
dud(256u3+276.09864…u2+120.67659…u+25.47435…)
합계/차이 규칙 적용: (f±g)′=f′±g′=dud(256u3)+dud(276.09864…u2)+dud(120.67659…u)+dud(25.47435…)
dud(256u3)=768u2
dud(256u3)
정수를 빼라: (a⋅f)′=a⋅f′=256dud(u3)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=256⋅3u3−1
단순화=768u2
dud(276.09864…u2)=552.19728…u
dud(276.09864…u2)
정수를 빼라: (a⋅f)′=a⋅f′=276.09864…dud(u2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=276.09864…⋅2u2−1
단순화=552.19728…u
dud(120.67659…u)=120.67659…
dud(120.67659…u)
정수를 빼라: (a⋅f)′=a⋅f′=120.67659…dudu
공통 도함수 적용: dudu=1=120.67659…⋅1
단순화=120.67659…
dud(25.47435…)=0
dud(25.47435…)
상수의 도함수: dxd(a)=0=0
=768u2+552.19728…u+120.67659…+0
단순화=768u2+552.19728…u+120.67659…
렛 u0=0계산하다 un+1 까지 Δun+1<0.000001
u1=−0.21109…:Δu1=0.21109…
f(u0)=256⋅03+276.09864…⋅02+120.67659…⋅0+25.47435…=25.47435…f′(u0)=768⋅02+552.19728…⋅0+120.67659…=120.67659…u1=−0.21109…
Δu1=∣−0.21109…−0∣=0.21109…Δu1=0.21109…
u2=−0.46923…:Δu2=0.25813…
f(u1)=256(−0.21109…)3+276.09864…(−0.21109…)2+120.67659…(−0.21109…)+25.47435…=9.89525…f′(u1)=768(−0.21109…)2+552.19728…(−0.21109…)+120.67659…=38.33318…u2=−0.46923…
Δu2=∣−0.46923…−(−0.21109…)∣=0.25813…Δu2=0.25813…
u3=−0.57330…:Δu3=0.10407…
f(u2)=256(−0.46923…)3+276.09864…(−0.46923…)2+120.67659…(−0.46923…)+25.47435…=3.19139…f′(u2)=768(−0.46923…)2+552.19728…(−0.46923…)+120.67659…=30.66554…u3=−0.57330…
Δu3=∣−0.57330…−(−0.46923…)∣=0.10407…Δu3=0.10407…
u4=−0.55205…:Δu4=0.02125…
f(u3)=256(−0.57330…)3+276.09864…(−0.57330…)2+120.67659…(−0.57330…)+25.47435…=−1.20130…f′(u3)=768(−0.57330…)2+552.19728…(−0.57330…)+120.67659…=56.52438…u4=−0.55205…
Δu4=∣−0.55205…−(−0.57330…)∣=0.02125…Δu4=0.02125…
u5=−0.55061…:Δu5=0.00143…
f(u4)=256(−0.55205…)3+276.09864…(−0.55205…)2+120.67659…(−0.55205…)+25.47435…=−0.07170…f′(u4)=768(−0.55205…)2+552.19728…(−0.55205…)+120.67659…=49.89187…u5=−0.55061…
Δu5=∣−0.55061…−(−0.55205…)∣=0.00143…Δu5=0.00143…
u6=−0.55060…:Δu6=6.15991E−6
f(u5)=256(−0.55061…)3+276.09864…(−0.55061…)2+120.67659…(−0.55061…)+25.47435…=−0.00030…f′(u5)=768(−0.55061…)2+552.19728…(−0.55061…)+120.67659…=49.46837…u6=−0.55060…
Δu6=∣−0.55060…−(−0.55061…)∣=6.15991E−6Δu6=6.15991E−6
u7=−0.55060…:Δu7=1.12585E−10
f(u6)=256(−0.55060…)3+276.09864…(−0.55060…)2+120.67659…(−0.55060…)+25.47435…=−5.56919E−9f′(u6)=768(−0.55060…)2+552.19728…(−0.55060…)+120.67659…=49.46656…u7=−0.55060…
Δu7=∣−0.55060…−(−0.55060…)∣=1.12585E−10Δu7=1.12585E−10
u≈−0.55060…
긴 나눗셈 적용:u+0.55060…256u3+276.09864…u2+120.67659…u+25.47435…=256u2+135.14273…u+46.26578…
256u2+135.14273…u+46.26578…≈0
다음을 위한 하나의 솔루션 찾기 256u2+135.14273…u+46.26578…=0 뉴턴-랩슨을 이용하여:솔루션 없음 u∈R
256u2+135.14273…u+46.26578…=0
뉴턴-랩슨 근사 정의
f(u)=256u2+135.14273…u+46.26578…
f′(u)찾다 :512u+135.14273…
dud(256u2+135.14273…u+46.26578…)
합계/차이 규칙 적용: (f±g)′=f′±g′=dud(256u2)+dud(135.14273…u)+dud(46.26578…)
dud(256u2)=512u
dud(256u2)
정수를 빼라: (a⋅f)′=a⋅f′=256dud(u2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=256⋅2u2−1
단순화=512u
dud(135.14273…u)=135.14273…
dud(135.14273…u)
정수를 빼라: (a⋅f)′=a⋅f′=135.14273…dudu
공통 도함수 적용: dudu=1=135.14273…⋅1
단순화=135.14273…
dud(46.26578…)=0
dud(46.26578…)
상수의 도함수: dxd(a)=0=0
=512u+135.14273…+0
단순화=512u+135.14273…
렛 u0=0계산하다 un+1 까지 Δun+1<0.000001
u1=−0.34234…:Δu1=0.34234…
f(u0)=256⋅02+135.14273…⋅0+46.26578…=46.26578…f′(u0)=512⋅0+135.14273…=135.14273…u1=−0.34234…
Δu1=∣−0.34234…−0∣=0.34234…Δu1=0.34234…
u2=0.40514…:Δu2=0.74749…
f(u1)=256(−0.34234…)2+135.14273…(−0.34234…)+46.26578…=30.00367…f′(u1)=512(−0.34234…)+135.14273…=−40.13921…u2=0.40514…
Δu2=∣0.40514…−(−0.34234…)∣=0.74749…Δu2=0.74749…
u3=−0.01239…:Δu3=0.41753…
f(u2)=256⋅0.40514…2+135.14273…⋅0.40514…+46.26578…=143.03790…f′(u2)=512⋅0.40514…+135.14273…=342.57584…u3=−0.01239…
Δu3=∣−0.01239…−0.40514…∣=0.41753…Δu3=0.41753…
u4=−0.35890…:Δu4=0.34651…
f(u3)=256(−0.01239…)2+135.14273…(−0.01239…)+46.26578…=44.63019…f′(u3)=512(−0.01239…)+135.14273…=128.79718…u4=−0.35890…
Δu4=∣−0.35890…−(−0.01239…)∣=0.34651…Δu4=0.34651…
u5=0.27333…:Δu5=0.63223…
f(u4)=256(−0.35890…)2+135.14273…(−0.35890…)+46.26578…=30.73865…f′(u4)=512(−0.35890…)+135.14273…=−48.61865…u5=0.27333…
Δu5=∣0.27333…−(−0.35890…)∣=0.63223…Δu5=0.63223…
u6=−0.09865…:Δu6=0.37199…
f(u5)=256⋅0.27333…2+135.14273…⋅0.27333…+46.26578…=102.33017…f′(u5)=512⋅0.27333…+135.14273…=275.08816…u6=−0.09865…
Δu6=∣−0.09865…−0.27333…∣=0.37199…Δu6=0.37199…
u7=−0.51724…:Δu7=0.41858…
f(u6)=256(−0.09865…)2+135.14273…(−0.09865…)+46.26578…=35.42449…f′(u6)=512(−0.09865…)+135.14273…=84.62903…u7=−0.51724…
Δu7=∣−0.51724…−(−0.09865…)∣=0.41858…Δu7=0.41858…
u8=−0.17137…:Δu8=0.34586…
f(u7)=256(−0.51724…)2+135.14273…(−0.51724…)+46.26578…=44.85474…f′(u7)=512(−0.51724…)+135.14273…=−129.68675…u8=−0.17137…
Δu8=∣−0.17137…−(−0.51724…)∣=0.34586…Δu8=0.34586…
u9=−0.81747…:Δu9=0.64609…
f(u8)=256(−0.17137…)2+135.14273…(−0.17137…)+46.26578…=30.62425…f′(u8)=512(−0.17137…)+135.14273…=47.39863…u9=−0.81747…
Δu9=∣−0.81747…−(−0.17137…)∣=0.64609…Δu9=0.64609…
해결 방법을 찾을 수 없습니다
해결책은u≈0.07851…,u≈−0.55060…
뒤로 대체 u=cos(θ)cos(θ)≈0.07851…,cos(θ)≈−0.55060…
cos(θ)≈0.07851…,cos(θ)≈−0.55060…
cos(θ)=0.07851…:θ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn
cos(θ)=0.07851…
트리거 역속성 적용
cos(θ)=0.07851…
일반 솔루션 cos(θ)=0.07851…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn
θ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn
cos(θ)=−0.55060…:θ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
cos(θ)=−0.55060…
트리거 역속성 적용
cos(θ)=−0.55060…
일반 솔루션 cos(θ)=−0.55060…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
θ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
모든 솔루션 결합θ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn,θ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
해법을 원래 방정식에 연결하여 검증
솔루션을 에 연결하여 확인합니다 (1+4cos(θ))2=3sin(θ)
방정식에 맞지 않는 것은 제거하십시오.
솔루션 확인 arccos(0.07851…)+2πn:참
arccos(0.07851…)+2πn
n=1끼우다 arccos(0.07851…)+2π1
(1+4cos(θ))2=3sin(θ) 위한 {\ quad}끼우다{\ quad} θ=arccos(0.07851…)+2π1(1+4cos(arccos(0.07851…)+2π1))2=3sin(arccos(0.07851…)+2π1)
다듬다1.72670…=1.72670…
⇒참
솔루션 확인 2π−arccos(0.07851…)+2πn:거짓
2π−arccos(0.07851…)+2πn
n=1끼우다 2π−arccos(0.07851…)+2π1
(1+4cos(θ))2=3sin(θ) 위한 {\ quad}끼우다{\ quad} θ=2π−arccos(0.07851…)+2π1(1+4cos(2π−arccos(0.07851…)+2π1))2=3sin(2π−arccos(0.07851…)+2π1)
다듬다1.72670…=−1.72670…
⇒거짓
솔루션 확인 arccos(−0.55060…)+2πn:참
arccos(−0.55060…)+2πn
n=1끼우다 arccos(−0.55060…)+2π1
(1+4cos(θ))2=3sin(θ) 위한 {\ quad}끼우다{\ quad} θ=arccos(−0.55060…)+2π1(1+4cos(arccos(−0.55060…)+2π1))2=3sin(arccos(−0.55060…)+2π1)
다듬다1.44585…=1.44585…
⇒참
솔루션 확인 −arccos(−0.55060…)+2πn:거짓
−arccos(−0.55060…)+2πn
n=1끼우다 −arccos(−0.55060…)+2π1
(1+4cos(θ))2=3sin(θ) 위한 {\ quad}끼우다{\ quad} θ=−arccos(−0.55060…)+2π1(1+4cos(−arccos(−0.55060…)+2π1))2=3sin(−arccos(−0.55060…)+2π1)
다듬다1.44585…=−1.44585…
⇒거짓
θ=arccos(0.07851…)+2πn,θ=arccos(−0.55060…)+2πn
해를 10진수 형식으로 표시θ=1.49220…+2πn,θ=2.15388…+2πn