解
tan(x)+tan(x+45∘)=−2
解
x=120∘+180∘n,x=60∘+180∘n
+1
ラジアン
x=32π+πn,x=3π+πn解答ステップ
tan(x)+tan(x+45∘)=−2
三角関数の公式を使用して書き換える
tan(x)+tan(x+45∘)=−2
三角関数の公式を使用して書き換える
tan(x+45∘)
基本的な三角関数の公式を使用する: tan(x)=cos(x)sin(x)=cos(x+45∘)sin(x+45∘)
角の和の公式を使用する: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(x+45∘)sin(x)cos(45∘)+cos(x)sin(45∘)
角の和の公式を使用する: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)
簡素化 cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘):cos(x)−sin(x)sin(x)+cos(x)
cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)
sin(x)cos(45∘)+cos(x)sin(45∘)=22sin(x)+22cos(x)
sin(x)cos(45∘)+cos(x)sin(45∘)
簡素化 cos(45∘):22
cos(45∘)
次の自明恒等式を使用する:cos(45∘)=22
cos(x)360∘n 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22sin(x)+sin(45∘)cos(x)
簡素化 sin(45∘):22
sin(45∘)
次の自明恒等式を使用する:sin(45∘)=22
sin(x)360∘n 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22sin(x)+22cos(x)
=cos(45∘)cos(x)−sin(45∘)sin(x)22sin(x)+22cos(x)
cos(x)cos(45∘)−sin(x)sin(45∘)=22cos(x)−22sin(x)
cos(x)cos(45∘)−sin(x)sin(45∘)
簡素化 cos(45∘):22
cos(45∘)
次の自明恒等式を使用する:cos(45∘)=22
cos(x)360∘n 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)−sin(45∘)sin(x)
簡素化 sin(45∘):22
sin(45∘)
次の自明恒等式を使用する:sin(45∘)=22
sin(x)360∘n 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)−22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乗じる cos(x)22:22cos(x)
cos(x)22
分数を乗じる: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乗じる sin(x)22:22sin(x)
sin(x)22
分数を乗じる: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乗じる sin(x)22:22sin(x)
sin(x)22
分数を乗じる: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乗じる cos(x)22:22cos(x)
cos(x)22
分数を乗じる: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
分数を組み合わせる 22cos(x)−22sin(x):22cos(x)−2sin(x)
規則を適用 ca±cb=ca±b=22cos(x)−2sin(x)
=22cos(x)−2sin(x)22sin(x)+22cos(x)
分数を組み合わせる 22sin(x)+22cos(x):22sin(x)+2cos(x)
規則を適用 ca±cb=ca±b=22sin(x)+2cos(x)
=22cos(x)−2sin(x)22sin(x)+2cos(x)
分数を割る: dcba=b⋅ca⋅d=2(2cos(x)−2sin(x))(2sin(x)+2cos(x))⋅2
共通因数を約分する:2=2cos(x)−2sin(x)2sin(x)+2cos(x)
共通項をくくり出す 2=2cos(x)−2sin(x)2(sin(x)+cos(x))
共通項をくくり出す 2=2(cos(x)−sin(x))2(sin(x)+cos(x))
共通因数を約分する:2=cos(x)−sin(x)sin(x)+cos(x)
=cos(x)−sin(x)sin(x)+cos(x)
tan(x)+cos(x)−sin(x)sin(x)+cos(x)=−2
tan(x)+cos(x)−sin(x)sin(x)+cos(x)=−2
両辺から−2を引くtan(x)+cos(x)−sin(x)sin(x)+cos(x)+2=0
簡素化 tan(x)+cos(x)−sin(x)sin(x)+cos(x)+2:cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)+cos(x)−sin(x)sin(x)+cos(x)+2
元を分数に変換する: tan(x)=cos(x)−sin(x)tan(x)(cos(x)−sin(x)),2=cos(x)−sin(x)2(cos(x)−sin(x))=cos(x)−sin(x)tan(x)(cos(x)−sin(x))+cos(x)−sin(x)sin(x)+cos(x)+cos(x)−sin(x)2(cos(x)−sin(x))
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=cos(x)−sin(x)tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x))
拡張 tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x)):tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x))
拡張 tan(x)(cos(x)−sin(x)):tan(x)cos(x)−tan(x)sin(x)
tan(x)(cos(x)−sin(x))
分配法則を適用する: a(b−c)=ab−aca=tan(x),b=cos(x),c=sin(x)=tan(x)cos(x)−tan(x)sin(x)
=tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2(cos(x)−sin(x))
拡張 2(cos(x)−sin(x)):2cos(x)−2sin(x)
2(cos(x)−sin(x))
分配法則を適用する: a(b−c)=ab−aca=2,b=cos(x),c=sin(x)=2cos(x)−2sin(x)
=tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x)
簡素化 tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x):tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x)
類似した元を足す:cos(x)+2cos(x)=3cos(x)=tan(x)cos(x)−tan(x)sin(x)+sin(x)+3cos(x)−2sin(x)
類似した元を足す:sin(x)−2sin(x)=−sin(x)=tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
=tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
=cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)=0
g(x)f(x)=0⇒f(x)=0tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)=0
サイン, コサインで表わす
−sin(x)+3cos(x)+cos(x)tan(x)−sin(x)tan(x)
基本的な三角関数の公式を使用する: tan(x)=cos(x)sin(x)=−sin(x)+3cos(x)+cos(x)cos(x)sin(x)−sin(x)cos(x)sin(x)
簡素化 −sin(x)+3cos(x)+cos(x)cos(x)sin(x)−sin(x)cos(x)sin(x):cos(x)3cos2(x)−sin2(x)
−sin(x)+3cos(x)+cos(x)cos(x)sin(x)−sin(x)cos(x)sin(x)
cos(x)cos(x)sin(x)=sin(x)
cos(x)cos(x)sin(x)
分数を乗じる: a⋅cb=ca⋅b=cos(x)sin(x)cos(x)
共通因数を約分する:cos(x)=sin(x)
sin(x)cos(x)sin(x)=cos(x)sin2(x)
sin(x)cos(x)sin(x)
分数を乗じる: a⋅cb=ca⋅b=cos(x)sin(x)sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
指数の規則を適用する: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
数を足す:1+1=2=sin2(x)
=cos(x)sin2(x)
=−sin(x)+3cos(x)+sin(x)−cos(x)sin2(x)
類似した元を足す:−sin(x)+sin(x)=0=3cos(x)−cos(x)sin2(x)
元を分数に変換する: 3cos(x)=cos(x)3cos(x)cos(x)=cos(x)3cos(x)cos(x)−cos(x)sin2(x)
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=cos(x)3cos(x)cos(x)−sin2(x)
3cos(x)cos(x)−sin2(x)=3cos2(x)−sin2(x)
3cos(x)cos(x)−sin2(x)
3cos(x)cos(x)=3cos2(x)
3cos(x)cos(x)
指数の規則を適用する: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=3cos1+1(x)
数を足す:1+1=2=3cos2(x)
=3cos2(x)−sin2(x)
=cos(x)3cos2(x)−sin2(x)
=cos(x)3cos2(x)−sin2(x)
cos(x)−sin2(x)+3cos2(x)=0
g(x)f(x)=0⇒f(x)=0−sin2(x)+3cos2(x)=0
因数 −sin2(x)+3cos2(x):(3cos(x)+sin(x))(3cos(x)−sin(x))
−sin2(x)+3cos2(x)
3cos2(x)−sin2(x)を書き換え (3cos(x))2−sin2(x)
3cos2(x)−sin2(x)
累乗根の規則を適用する: a=(a)23=(3)2=(3)2cos2(x)−sin2(x)
指数の規則を適用する: ambm=(ab)m(3)2cos2(x)=(3cos(x))2=(3cos(x))2−sin2(x)
=(3cos(x))2−sin2(x)
2乗の差の公式を適用する:x2−y2=(x+y)(x−y)(3cos(x))2−sin2(x)=(3cos(x)+sin(x))(3cos(x)−sin(x))=(3cos(x)+sin(x))(3cos(x)−sin(x))
(3cos(x)+sin(x))(3cos(x)−sin(x))=0
各部分を別個に解く3cos(x)+sin(x)=0or3cos(x)−sin(x)=0
3cos(x)+sin(x)=0:x=120∘+180∘n
3cos(x)+sin(x)=0
三角関数の公式を使用して書き換える
3cos(x)+sin(x)=0
cos(x),cos(x)=0で両辺を割るcos(x)3cos(x)+sin(x)=cos(x)0
簡素化3+cos(x)sin(x)=0
基本的な三角関数の公式を使用する: cos(x)sin(x)=tan(x)3+tan(x)=0
3+tan(x)=0
3を右側に移動します
3+tan(x)=0
両辺から3を引く3+tan(x)−3=0−3
簡素化tan(x)=−3
tan(x)=−3
以下の一般解 tan(x)=−3
tan(x)180∘n 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πtan(x)03313±∞−3−1−33
x=120∘+180∘n
x=120∘+180∘n
3cos(x)−sin(x)=0:x=60∘+180∘n
3cos(x)−sin(x)=0
三角関数の公式を使用して書き換える
3cos(x)−sin(x)=0
cos(x),cos(x)=0で両辺を割るcos(x)3cos(x)−sin(x)=cos(x)0
簡素化3−cos(x)sin(x)=0
基本的な三角関数の公式を使用する: cos(x)sin(x)=tan(x)3−tan(x)=0
3−tan(x)=0
3を右側に移動します
3−tan(x)=0
両辺から3を引く3−tan(x)−3=0−3
簡素化−tan(x)=−3
−tan(x)=−3
以下で両辺を割る−1
−tan(x)=−3
以下で両辺を割る−1−1−tan(x)=−1−3
簡素化tan(x)=3
tan(x)=3
以下の一般解 tan(x)=3
tan(x)180∘n 循環を含む周期性テーブル:
x06π4π3π2π32π43π65πtan(x)03313±∞−3−1−33
x=60∘+180∘n
x=60∘+180∘n
すべての解を組み合わせるx=120∘+180∘n,x=60∘+180∘n