解答
sin(x)sin(55.01−x)=5001200
解答
x=2.75168…+πn
+1
度数
x=157.65972…∘+180∘n求解步骤
sin(x)sin(55.01−x)=5001200
使用三角恒等式改写
sin(x)sin(55.01−x)=5001200
使用三角恒等式改写
sin(55.01−x)
使用角差恒等式: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(55.01)cos(x)−cos(55.01)sin(x)
化简 sin(55.01)cos(x)−cos(55.01)sin(x):−0.99948…cos(x)−0.03212…sin(x)
sin(55.01)cos(x)−cos(55.01)sin(x)
化简 sin(55.01):−0.99948…
sin(55.01)
sin(55.01)=−0.99948…=−0.99948…
=−0.99948…cos(x)−cos(55.01)sin(x)
化简 cos(55.01):0.03212…
cos(55.01)
cos(55.01)=0.03212…=0.03212…
=−0.99948…cos(x)−0.03212…sin(x)
=−0.99948…cos(x)−0.03212…sin(x)
sin(x)−0.99948…cos(x)−0.03212…sin(x)=5001200
5001200=512
5001200
约分:100=512
sin(x)−0.99948…cos(x)−0.03212…sin(x)=512
sin(x)−0.99948…cos(x)−0.03212…sin(x)=512
两边减去 512sin(x)−0.99948…cos(x)−0.03212…sin(x)−2.4=0
使用三角恒等式改写
−2.4+sin(x)−0.03212…sin(x)−0.99948…cos(x)
使用基本三角恒等式: sin(x)=csc(x)1=−2.4+csc(x)1−0.03212…⋅csc(x)1−0.99948…cos(x)
化简 −2.4+csc(x)1−0.03212…⋅csc(x)1−0.99948…cos(x):−0.99948…csc(x)cos(x)−2.43212…
−2.4+csc(x)1−0.03212…⋅csc(x)1−0.99948…cos(x)
csc(x)1−0.03212…⋅csc(x)1−0.99948…cos(x)=csc(x)(−csc(x)0.03212…−0.99948…cos(x))
csc(x)1−0.03212…⋅csc(x)1−0.99948…cos(x)
使用分式法则: cba=ba⋅c=1(−0.03212…⋅csc(x)1−0.99948…cos(x))csc(x)
0.03212…⋅csc(x)1=csc(x)0.03212…
0.03212…⋅csc(x)1
分式相乘: a⋅cb=ca⋅b=csc(x)1⋅0.03212…
数字相乘:1⋅0.03212…=0.03212…=csc(x)0.03212…
=1csc(x)(−csc(x)0.03212…−0.99948…cos(x))
使用分式法则: 1a=a=(−csc(x)0.03212…−0.99948…cos(x))csc(x)
=−2.4+csc(x)(−csc(x)0.03212…−0.99948…cos(x))
=−2.4+csc(x)(−csc(x)0.03212…−0.99948…cos(x))
乘开 csc(x)(−csc(x)0.03212…−0.99948…cos(x)):−0.03212…−0.99948…csc(x)cos(x)
csc(x)(−csc(x)0.03212…−0.99948…cos(x))
使用分配律: a(b−c)=ab−aca=csc(x),b=−csc(x)0.03212…,c=0.99948…cos(x)=csc(x)(−csc(x)0.03212…)−csc(x)⋅0.99948…cos(x)
使用加减运算法则+(−a)=−a=−csc(x)0.03212…csc(x)−0.99948…csc(x)cos(x)
csc(x)0.03212…csc(x)=0.03212…
csc(x)0.03212…csc(x)
分式相乘: a⋅cb=ca⋅b=csc(x)0.03212…csc(x)
约分:csc(x)=0.03212…
=−0.03212…−0.99948…csc(x)cos(x)
=−2.4−0.03212…−0.99948…csc(x)cos(x)
数字相减:−2.4−0.03212…=−2.43212…=−0.99948…csc(x)cos(x)−2.43212…
=−0.99948…csc(x)cos(x)−2.43212…
csc(x)cos(x)=cot(x)
csc(x)cos(x)
用 sin, cos 表示
csc(x)cos(x)
使用基本三角恒等式: csc(x)=sin(x)1=sin(x)1cos(x)
化简 sin(x)1cos(x):sin(x)cos(x)
sin(x)1cos(x)
分式相乘: a⋅cb=ca⋅b=sin(x)1cos(x)
乘以:1⋅cos(x)=cos(x)=sin(x)cos(x)
=sin(x)cos(x)
=sin(x)cos(x)
使用基本三角恒等式: sin(x)cos(x)=cot(x)=cot(x)
=−2.43212…−0.99948…cot(x)
−2.43212…−0.99948…cot(x)=0
将 2.43212…到右边
−2.43212…−0.99948…cot(x)=0
两边加上 2.43212…−2.43212…−0.99948…cot(x)+2.43212…=0+2.43212…
化简−0.99948…cot(x)=2.43212…
−0.99948…cot(x)=2.43212…
两边除以 −0.99948…
−0.99948…cot(x)=2.43212…
两边除以 −0.99948…−0.99948…−0.99948…cot(x)=−0.99948…2.43212…
化简
−0.99948…−0.99948…cot(x)=−0.99948…2.43212…
化简 −0.99948…−0.99948…cot(x):cot(x)
−0.99948…−0.99948…cot(x)
使用分式法则: −b−a=ba=0.99948…0.99948…cot(x)
约分:0.99948…=cot(x)
化简 −0.99948…2.43212…:−2.43337…
−0.99948…2.43212…
使用分式法则: −ba=−ba=−0.99948…2.43212…
数字相除:0.99948…2.43212…=2.43337…=−2.43337…
cot(x)=−2.43337…
cot(x)=−2.43337…
cot(x)=−2.43337…
使用反三角函数性质
cot(x)=−2.43337…
cot(x)=−2.43337…的通解cot(x)=−a⇒x=arccot(−a)+πnx=arccot(−2.43337…)+πn
x=arccot(−2.43337…)+πn
以小数形式表示解x=2.75168…+πn