解答
3sin(2x+30)=tan(2x+30)
解答
x=πn−15,x=2π+πn−15,x=21.23095…+πn−15,x=π−21.23095…+πn−15
+1
度数
x=−859.43669…∘+180∘n,x=−769.43669…∘+180∘n,x=−824.17230…∘+180∘n,x=−714.70108…∘+180∘n求解步骤
3sin(2x+30)=tan(2x+30)
两边减去 tan(2x+30)3sin(2x+30)−tan(2x+30)=0
用 sin, cos 表示
−tan(30+2x)+3sin(30+2x)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=−cos(30+2x)sin(30+2x)+3sin(30+2x)
化简 −cos(30+2x)sin(30+2x)+3sin(30+2x):cos(30+2x)−sin(30+2x)+3sin(30+2x)cos(30+2x)
−cos(30+2x)sin(30+2x)+3sin(30+2x)
将项转换为分式: 3sin(2x+30)=cos(30+2x)3sin(30+2x)cos(30+2x)=−cos(30+2x)sin(30+2x)+cos(30+2x)3sin(30+2x)cos(30+2x)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(30+2x)−sin(30+2x)+3sin(30+2x)cos(30+2x)
=cos(30+2x)−sin(30+2x)+3sin(30+2x)cos(30+2x)
cos(30+2x)−sin(30+2x)+3cos(30+2x)sin(30+2x)=0
g(x)f(x)=0⇒f(x)=0−sin(30+2x)+3cos(30+2x)sin(30+2x)=0
分解 −sin(30+2x)+3cos(30+2x)sin(30+2x):sin(2(x+15))(3cos(2(x+15))−1)
−sin(30+2x)+3cos(30+2x)sin(30+2x)
因式分解出通项 sin(30+2x)=sin(30+2x)(−1+3cos(30+2x))
分解 2x+30:2(x+15)
2x+30
因式分解出通项 2:2(x+15)
2x+30
将 30 改写为 2⋅15=2x+2⋅15
因式分解出通项 2=2(x+15)
=2(x+15)
=sin(2x+30)(3cos(2(x+15))−1)
分解 2x+30:2(x+15)
2x+30
因式分解出通项 2:2(x+15)
2x+30
将 30 改写为 2⋅15=2x+2⋅15
因式分解出通项 2=2(x+15)
=2(x+15)
=sin(2(x+15))(3cos(2(x+15))−1)
sin(2(x+15))(3cos(2(x+15))−1)=0
分别求解每个部分sin(2(x+15))=0or3cos(2(x+15))−1=0
sin(2(x+15))=0:x=πn−15,x=2π+πn−15
sin(2(x+15))=0
sin(2(x+15))=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
2(x+15)=0+2πn,2(x+15)=π+2πn
2(x+15)=0+2πn,2(x+15)=π+2πn
解 2(x+15)=0+2πn:x=πn−15
2(x+15)=0+2πn
0+2πn=2πn2(x+15)=2πn
两边除以 2
2(x+15)=2πn
两边除以 222(x+15)=22πn
化简x+15=πn
x+15=πn
将 15到右边
x+15=πn
两边减去 15x+15−15=πn−15
化简x=πn−15
x=πn−15
解 2(x+15)=π+2πn:x=2π+πn−15
2(x+15)=π+2πn
两边除以 2
2(x+15)=π+2πn
两边除以 222(x+15)=2π+22πn
化简x+15=2π+πn
x+15=2π+πn
将 15到右边
x+15=2π+πn
两边减去 15x+15−15=2π+πn−15
化简x=2π+πn−15
x=2π+πn−15
x=πn−15,x=2π+πn−15
3cos(2(x+15))−1=0:x=2arccos(31)+πn−15,x=π−2arccos(31)+πn−15
3cos(2(x+15))−1=0
将 1到右边
3cos(2(x+15))−1=0
两边加上 13cos(2(x+15))−1+1=0+1
化简3cos(2(x+15))=1
3cos(2(x+15))=1
两边除以 3
3cos(2(x+15))=1
两边除以 333cos(2(x+15))=31
化简cos(2(x+15))=31
cos(2(x+15))=31
使用反三角函数性质
cos(2(x+15))=31
cos(2(x+15))=31的通解cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πn2(x+15)=arccos(31)+2πn,2(x+15)=2π−arccos(31)+2πn
2(x+15)=arccos(31)+2πn,2(x+15)=2π−arccos(31)+2πn
解 2(x+15)=arccos(31)+2πn:x=2arccos(31)+πn−15
2(x+15)=arccos(31)+2πn
两边除以 2
2(x+15)=arccos(31)+2πn
两边除以 222(x+15)=2arccos(31)+22πn
化简x+15=2arccos(31)+πn
x+15=2arccos(31)+πn
将 15到右边
x+15=2arccos(31)+πn
两边减去 15x+15−15=2arccos(31)+πn−15
化简x=2arccos(31)+πn−15
x=2arccos(31)+πn−15
解 2(x+15)=2π−arccos(31)+2πn:x=π−2arccos(31)+πn−15
2(x+15)=2π−arccos(31)+2πn
两边除以 2
2(x+15)=2π−arccos(31)+2πn
两边除以 222(x+15)=22π−2arccos(31)+22πn
化简x+15=π−2arccos(31)+πn
x+15=π−2arccos(31)+πn
将 15到右边
x+15=π−2arccos(31)+πn
两边减去 15x+15−15=π−2arccos(31)+πn−15
化简x=π−2arccos(31)+πn−15
x=π−2arccos(31)+πn−15
x=2arccos(31)+πn−15,x=π−2arccos(31)+πn−15
合并所有解x=πn−15,x=2π+πn−15,x=2arccos(31)+πn−15,x=π−2arccos(31)+πn−15
以小数形式表示解x=πn−15,x=2π+πn−15,x=21.23095…+πn−15,x=π−21.23095…+πn−15