Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

beweisen (cos(pi-x))/(cos(pi/2+x))=cot(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

beweisen cos(2π​+x)cos(π−x)​=cot(x)

Lösung

Wahr
Schritte zur Lösung
cos(2π​+x)cos(π−x)​=cot(x)
Manipuliere die linke Seitecos(2π​+x)cos(π−x)​
Umschreiben mit Hilfe von Trigonometrie-Identitäten
cos(2π​+x)
Benutze die Identität der Winkelsumme: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2π​)cos(x)−sin(2π​)sin(x)
Vereinfache cos(2π​)cos(x)−sin(2π​)sin(x):−sin(x)
cos(2π​)cos(x)−sin(2π​)sin(x)
cos(2π​)cos(x)=0
cos(2π​)cos(x)
Vereinfache cos(2π​):0
cos(2π​)
Verwende die folgende triviale Identität:cos(2π​)=0
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅cos(x)
Wende Regel an 0⋅a=0=0
sin(2π​)sin(x)=sin(x)
sin(2π​)sin(x)
Vereinfache sin(2π​):1
sin(2π​)
Verwende die folgende triviale Identität:sin(2π​)=1
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=1
=1⋅sin(x)
Multipliziere: 1⋅sin(x)=sin(x)=sin(x)
=0−sin(x)
0−sin(x)=−sin(x)=−sin(x)
=−sin(x)
=−sin(x)cos(π−x)​
Umschreiben mit Hilfe von Trigonometrie-Identitäten
cos(π−x)
Benutze die Winkel-Differenz-Identität: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(π)cos(x)+sin(π)sin(x)
Vereinfache cos(π)cos(x)+sin(π)sin(x):−cos(x)
cos(π)cos(x)+sin(π)sin(x)
cos(π)cos(x)=−cos(x)
cos(π)cos(x)
Vereinfache cos(π):−1
cos(π)
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅cos(x)
Multipliziere: 1⋅cos(x)=cos(x)=−cos(x)
=−cos(x)+sin(π)sin(x)
sin(π)sin(x)=0
sin(π)sin(x)
Vereinfache sin(π):0
sin(π)
Verwende die folgende triviale Identität:sin(π)=0
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
=0⋅sin(x)
Wende Regel an 0⋅a=0=0
=−cos(x)+0
−cos(x)+0=−cos(x)=−cos(x)
=−cos(x)
=−sin(x)−cos(x)​
Wende Bruchregel an: −b−a​=ba​=sin(x)cos(x)​
Verwende die grundlegende trigonometrische Identität: sin(x)cos(x)​=cot(x)=cot(x)
Wir haben gezeigt, dass beide Seiten die gleiche Form annehmen können⇒Wahr

Beliebte Beispiele

beweisen cot(θ)+tan(θ)=2csc(2θ)provecot(θ)+tan(θ)=2csc(2θ)beweisen cos(x)(tan(x)-sec(-x))=sin(x)-1provecos(x)(tan(x)−sec(−x))=sin(x)−1beweisen 1/(sec^2(x))+1/(csc^2(x))=1provesec2(x)1​+csc2(x)1​=1beweisen (1+tan^2(x))cot^2(x)=csc^2(x)prove(1+tan2(x))cot2(x)=csc2(x)beweisen 1-tan^2(θ/2)=(2cos(θ))/(1+cos(θ))prove1−tan2(2θ​)=1+cos(θ)2cos(θ)​
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024