解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

sin(4x)-cos(4x)= 1/2

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

sin(4x)−cos(4x)=21​

解

x=2πn​+16π​+40.36136…​,x=4π​+16π​+2πn​−40.36136…​
+1
度
x=16.42620…∘+90∘n,x=51.07379…∘+90∘n
解答ステップ
sin(4x)−cos(4x)=21​
三角関数の公式を使用して書き換える
sin(4x)−cos(4x)
sin(4x)−cos(4x)=2​sin(4x−4π​)
sin(4x)−cos(4x)
書き換え=2​(2​1​sin(4x)−2​1​cos(4x))
次の自明恒等式を使用する:cos(4π​)=2​1​次の自明恒等式を使用する:sin(4π​)=2​1​=2​(cos(4π​)sin(4x)−sin(4π​)cos(4x))
角の和の公式を使用する: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=2​sin(4x−4π​)
=2​sin(4x−4π​)
2​sin(4x−4π​)=21​
以下で両辺を割る2​
2​sin(4x−4π​)=21​
以下で両辺を割る2​2​2​sin(4x−4π​)​=2​21​​
簡素化
2​2​sin(4x−4π​)​=2​21​​
簡素化 2​2​sin(4x−4π​)​:sin(4x−4π​)
2​2​sin(4x−4π​)​
共通因数を約分する:2​=sin(4x−4π​)
簡素化 2​21​​:42​​
2​21​​
分数の規則を適用する: acb​​=c⋅ab​=22​1​
有理化する 22​1​:42​​
22​1​
共役で乗じる 2​2​​=22​2​1⋅2​​
1⋅2​=2​
22​2​=4
22​2​
指数の規則を適用する: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
類似した元を足す:21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
分数を乗じる: a⋅cb​=ca⋅b​=21⋅2​
共通因数を約分する:2=1
=21+1
数を足す:1+1=2=22
22=4=4
=42​​
=42​​
sin(4x−4π​)=42​​
sin(4x−4π​)=42​​
sin(4x−4π​)=42​​
三角関数の逆数プロパティを適用する
sin(4x−4π​)=42​​
以下の一般解 sin(4x−4π​)=42​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn4x−4π​=arcsin(42​​)+2πn,4x−4π​=π−arcsin(42​​)+2πn
4x−4π​=arcsin(42​​)+2πn,4x−4π​=π−arcsin(42​​)+2πn
解く 4x−4π​=arcsin(42​​)+2πn:x=2πn​+16π​+4arcsin(42​​)​
4x−4π​=arcsin(42​​)+2πn
簡素化 arcsin(42​​)+2πn:arcsin(22​1​)+2πn
arcsin(42​​)+2πn
42​​=22​1​
42​​
因数 4:22
因数 4=22
=222​​
キャンセル 222​​:223​1​
222​​
累乗根の規則を適用する: na​=an1​2​=221​=22221​​
指数の規則を適用する: xbxa​=xb−a1​22221​​=22−21​1​=22−21​1​
数を引く:2−21​=23​=223​1​
=223​1​
223​=22​
223​
223​=21+21​=21+21​
指数の規則を適用する: xa+b=xaxb=21⋅221​
改良=22​
=22​1​
=arcsin(22​1​)+2πn
4x−4π​=arcsin(22​1​)+2πn
4π​を右側に移動します
4x−4π​=arcsin(22​1​)+2πn
両辺に4π​を足す4x−4π​+4π​=arcsin(22​1​)+2πn+4π​
簡素化4x=arcsin(22​1​)+2πn+4π​
4x=arcsin(22​1​)+2πn+4π​
以下で両辺を割る4
4x=arcsin(22​1​)+2πn+4π​
以下で両辺を割る444x​=4arcsin(22​1​)​+42πn​+44π​​
簡素化
44x​=4arcsin(22​1​)​+42πn​+44π​​
簡素化 44x​:x
44x​
数を割る:44​=1=x
簡素化 4arcsin(22​1​)​+42πn​+44π​​:2πn​+16π​+4arcsin(42​​)​
4arcsin(22​1​)​+42πn​+44π​​
条件のようなグループ=42πn​+44π​​+4arcsin(22​1​)​
42πn​=2πn​
42πn​
共通因数を約分する:2=2πn​
44π​​=16π​
44π​​
分数の規則を適用する: acb​​=c⋅ab​=4⋅4π​
数を乗じる:4⋅4=16=16π​
=2πn​+16π​+4arcsin(22​1​)​
arcsin(22​1​)=arcsin(42​​)
arcsin(22​1​)
=arcsin(42​​)
=2πn​+16π​+4arcsin(42​​)​
x=2πn​+16π​+4arcsin(42​​)​
x=2πn​+16π​+4arcsin(42​​)​
x=2πn​+16π​+4arcsin(42​​)​
解く 4x−4π​=π−arcsin(42​​)+2πn:x=4π​+16π​+2πn​−4arcsin(42​​)​
4x−4π​=π−arcsin(42​​)+2πn
簡素化 π−arcsin(42​​)+2πn:π−arcsin(22​1​)+2πn
π−arcsin(42​​)+2πn
42​​=22​1​
42​​
因数 4:22
因数 4=22
=222​​
キャンセル 222​​:223​1​
222​​
累乗根の規則を適用する: na​=an1​2​=221​=22221​​
指数の規則を適用する: xbxa​=xb−a1​22221​​=22−21​1​=22−21​1​
数を引く:2−21​=23​=223​1​
=223​1​
223​=22​
223​
223​=21+21​=21+21​
指数の規則を適用する: xa+b=xaxb=21⋅221​
改良=22​
=22​1​
=π−arcsin(22​1​)+2πn
4x−4π​=π−arcsin(22​1​)+2πn
4π​を右側に移動します
4x−4π​=π−arcsin(22​1​)+2πn
両辺に4π​を足す4x−4π​+4π​=π−arcsin(22​1​)+2πn+4π​
簡素化4x=π−arcsin(22​1​)+2πn+4π​
4x=π−arcsin(22​1​)+2πn+4π​
以下で両辺を割る4
4x=π−arcsin(22​1​)+2πn+4π​
以下で両辺を割る444x​=4π​−4arcsin(22​1​)​+42πn​+44π​​
簡素化
44x​=4π​−4arcsin(22​1​)​+42πn​+44π​​
簡素化 44x​:x
44x​
数を割る:44​=1=x
簡素化 4π​−4arcsin(22​1​)​+42πn​+44π​​:4π​+16π​+2πn​−4arcsin(42​​)​
4π​−4arcsin(22​1​)​+42πn​+44π​​
条件のようなグループ=4π​+42πn​+44π​​−4arcsin(22​1​)​
42πn​=2πn​
42πn​
共通因数を約分する:2=2πn​
44π​​=16π​
44π​​
分数の規則を適用する: acb​​=c⋅ab​=4⋅4π​
数を乗じる:4⋅4=16=16π​
=4π​+2πn​+16π​−4arcsin(22​1​)​
条件のようなグループ=4π​+16π​+2πn​−4arcsin(22​1​)​
=4π​+16π​+2πn​−4arcsin(42​​)​
42​​=22​1​
42​​
因数 4:22
因数 4=22
=222​​
キャンセル 222​​:223​1​
222​​
累乗根の規則を適用する: na​=an1​2​=221​=22221​​
指数の規則を適用する: xbxa​=xb−a1​22221​​=22−21​1​=22−21​1​
数を引く:2−21​=23​=223​1​
=223​1​
223​=22​
223​
223​=21+21​=21+21​
指数の規則を適用する: xa+b=xaxb=21⋅221​
改良=22​
=22​1​
=4π​+16π​+2πn​−4arcsin(22​1​)​
arcsin(22​1​)=arcsin(42​​)
arcsin(22​1​)
=arcsin(42​​)
=4π​+16π​+2πn​−4arcsin(42​​)​
x=4π​+16π​+2πn​−4arcsin(42​​)​
x=4π​+16π​+2πn​−4arcsin(42​​)​
x=4π​+16π​+2πn​−4arcsin(42​​)​
x=2πn​+16π​+4arcsin(42​​)​,x=4π​+16π​+2πn​−4arcsin(42​​)​
10進法形式で解を証明するx=2πn​+16π​+40.36136…​,x=4π​+16π​+2πn​−40.36136…​

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

tan^2(θ)+sec(θ)=-2tan2(θ)+sec(θ)=−29csc(x)=6sqrt(3)9csc(x)=63​5sec(θ)-2sec^2(θ)=tan^2(θ)-15sec(θ)−2sec2(θ)=tan2(θ)−1cos(2x)+cos(x)=0,(0,2pi)cos(2x)+cos(x)=0,(0,2π)sqrt(3)*sin(x/2)+cos(x)=13​⋅sin(2x​)+cos(x)=1
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024