해법
cos2(x)=tan(x)
해법
x=0.59876…+2πn,x=−2.54282…+2πn
+1
도
x=34.30680…∘+360∘n,x=−145.69319…∘+360∘n솔루션 단계
cos2(x)=tan(x)
빼다 tan(x) 양쪽에서cos2(x)−tan(x)=0
죄로 표현하라, 왜냐하면cos2(x)−cos(x)sin(x)=0
cos2(x)−cos(x)sin(x)단순화하세요:cos(x)cos3(x)−sin(x)
cos2(x)−cos(x)sin(x)
요소를 분수로 변환: cos2(x)=cos(x)cos2(x)cos(x)=cos(x)cos2(x)cos(x)−cos(x)sin(x)
분모가 같기 때문에, 분수를 합친다: ca±cb=ca±b=cos(x)cos2(x)cos(x)−sin(x)
cos2(x)cos(x)−sin(x)=cos3(x)−sin(x)
cos2(x)cos(x)−sin(x)
cos2(x)cos(x)=cos3(x)
cos2(x)cos(x)
지수 규칙 적용: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=cos2+1(x)
숫자 추가: 2+1=3=cos3(x)
=cos3(x)−sin(x)
=cos(x)cos3(x)−sin(x)
cos(x)cos3(x)−sin(x)=0
g(x)f(x)=0⇒f(x)=0cos3(x)−sin(x)=0
더하다 sin(x) 양쪽으로cos3(x)=sin(x)
양쪽을 제곱(cos3(x))2=sin2(x)
빼다 sin2(x) 양쪽에서cos6(x)−sin2(x)=0
삼각성을 사용하여 다시 쓰기
cos6(x)−sin2(x)
피타고라스 정체성 사용: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos6(x)−(1−cos2(x))
−(1−cos2(x)):−1+cos2(x)
−(1−cos2(x))
괄호 배포=−(1)−(−cos2(x))
마이너스 플러스 규칙 적용−(−a)=a,−(a)=−a=−1+cos2(x)
=cos6(x)−1+cos2(x)
−1+cos2(x)+cos6(x)=0
대체로 해결
−1+cos2(x)+cos6(x)=0
하게: cos(x)=u−1+u2+u6=0
−1+u2+u6=0:u=0.68232…,u=−0.68232…
−1+u2+u6=0
표준 양식으로 작성 anxn+…+a1x+a0=0u6+u2−1=0
다음으로 방정식 다시 쓰기 v=u2 그리고 v3=u6v3+v−1=0
v3+v−1=0해결 :v≈0.68232…
v3+v−1=0
다음을 위한 하나의 솔루션 찾기 v3+v−1=0 뉴턴-랩슨을 이용하여:v≈0.68232…
v3+v−1=0
뉴턴-랩슨 근사 정의
f(v)=v3+v−1
f′(v)찾다 :3v2+1
dvd(v3+v−1)
합계/차이 규칙 적용: (f±g)′=f′±g′=dvd(v3)+dvdv−dvd(1)
dvd(v3)=3v2
dvd(v3)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=3v3−1
단순화=3v2
dvdv=1
dvdv
공통 도함수 적용: dvdv=1=1
dvd(1)=0
dvd(1)
상수의 도함수: dxd(a)=0=0
=3v2+1−0
단순화=3v2+1
렛 v0=1계산하다 vn+1 까지 Δvn+1<0.000001
v1=0.75:Δv1=0.25
f(v0)=13+1−1=1f′(v0)=3⋅12+1=4v1=0.75
Δv1=∣0.75−1∣=0.25Δv1=0.25
v2=0.68604…:Δv2=0.06395…
f(v1)=0.753+0.75−1=0.171875f′(v1)=3⋅0.752+1=2.6875v2=0.68604…
Δv2=∣0.68604…−0.75∣=0.06395…Δv2=0.06395…
v3=0.68233…:Δv3=0.00370…
f(v2)=0.68604…3+0.68604…−1=0.00894…f′(v2)=3⋅0.68604…2+1=2.41197…v3=0.68233…
Δv3=∣0.68233…−0.68604…∣=0.00370…Δv3=0.00370…
v4=0.68232…:Δv4=0.00001…
f(v3)=0.68233…3+0.68233…−1=0.00002…f′(v3)=3⋅0.68233…2+1=2.39676…v4=0.68232…
Δv4=∣0.68232…−0.68233…∣=0.00001…Δv4=0.00001…
v5=0.68232…:Δv5=1.18493E−10
f(v4)=0.68232…3+0.68232…−1=2.83995E−10f′(v4)=3⋅0.68232…2+1=2.39671…v5=0.68232…
Δv5=∣0.68232…−0.68232…∣=1.18493E−10Δv5=1.18493E−10
v≈0.68232…
긴 나눗셈 적용:v−0.68232…v3+v−1=v2+0.68232…v+1.46557…
v2+0.68232…v+1.46557…≈0
다음을 위한 하나의 솔루션 찾기 v2+0.68232…v+1.46557…=0 뉴턴-랩슨을 이용하여:솔루션 없음 v∈R
v2+0.68232…v+1.46557…=0
뉴턴-랩슨 근사 정의
f(v)=v2+0.68232…v+1.46557…
f′(v)찾다 :2v+0.68232…
dvd(v2+0.68232…v+1.46557…)
합계/차이 규칙 적용: (f±g)′=f′±g′=dvd(v2)+dvd(0.68232…v)+dvd(1.46557…)
dvd(v2)=2v
dvd(v2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=2v2−1
단순화=2v
dvd(0.68232…v)=0.68232…
dvd(0.68232…v)
정수를 빼라: (a⋅f)′=a⋅f′=0.68232…dvdv
공통 도함수 적용: dvdv=1=0.68232…⋅1
단순화=0.68232…
dvd(1.46557…)=0
dvd(1.46557…)
상수의 도함수: dxd(a)=0=0
=2v+0.68232…+0
단순화=2v+0.68232…
렛 v0=−2계산하다 vn+1 까지 Δvn+1<0.000001
v1=−0.76391…:Δv1=1.23608…
f(v0)=(−2)2+0.68232…(−2)+1.46557…=4.10091…f′(v0)=2(−2)+0.68232…=−3.31767…v1=−0.76391…
Δv1=∣−0.76391…−(−2)∣=1.23608…Δv1=1.23608…
v2=1.04316…:Δv2=1.80707…
f(v1)=(−0.76391…)2+0.68232…(−0.76391…)+1.46557…=1.52789…f′(v1)=2(−0.76391…)+0.68232…=−0.84550…v2=1.04316…
Δv2=∣1.04316…−(−0.76391…)∣=1.80707…Δv2=1.80707…
v3=−0.13630…:Δv3=1.17946…
f(v2)=1.04316…2+0.68232…⋅1.04316…+1.46557…=3.26553…f′(v2)=2⋅1.04316…+0.68232…=2.76865…v3=−0.13630…
Δv3=∣−0.13630…−1.04316…∣=1.17946…Δv3=1.17946…
v4=−3.53171…:Δv4=3.39540…
f(v3)=(−0.13630…)2+0.68232…(−0.13630…)+1.46557…=1.39114…f′(v3)=2(−0.13630…)+0.68232…=0.40971…v4=−3.53171…
Δv4=∣−3.53171…−(−0.13630…)∣=3.39540…Δv4=3.39540…
v5=−1.72500…:Δv5=1.80670…
f(v4)=(−3.53171…)2+0.68232…(−3.53171…)+1.46557…=11.52876…f′(v4)=2(−3.53171…)+0.68232…=−6.38109…v5=−1.72500…
Δv5=∣−1.72500…−(−3.53171…)∣=1.80670…Δv5=1.80670…
v6=−0.54560…:Δv6=1.17939…
f(v5)=(−1.72500…)2+0.68232…(−1.72500…)+1.46557…=3.26419…f′(v5)=2(−1.72500…)+0.68232…=−2.76767…v6=−0.54560…
Δv6=∣−0.54560…−(−1.72500…)∣=1.17939…Δv6=1.17939…
v7=2.85625…:Δv7=3.40185…
f(v6)=(−0.54560…)2+0.68232…(−0.54560…)+1.46557…=1.39097…f′(v6)=2(−0.54560…)+0.68232…=−0.40888…v7=2.85625…
Δv7=∣2.85625…−(−0.54560…)∣=3.40185…Δv7=3.40185…
v8=1.04656…:Δv8=1.80968…
f(v7)=2.85625…2+0.68232…⋅2.85625…+1.46557…=11.57264…f′(v7)=2⋅2.85625…+0.68232…=6.39483…v8=1.04656…
Δv8=∣1.04656…−2.85625…∣=1.80968…Δv8=1.80968…
v9=−0.13340…:Δv9=1.17997…
f(v8)=1.04656…2+0.68232…⋅1.04656…+1.46557…=3.27496…f′(v8)=2⋅1.04656…+0.68232…=2.77545…v9=−0.13340…
Δv9=∣−0.13340…−1.04656…∣=1.17997…Δv9=1.17997…
v10=−3.48434…:Δv10=3.35093…
f(v9)=(−0.13340…)2+0.68232…(−0.13340…)+1.46557…=1.39234…f′(v9)=2(−0.13340…)+0.68232…=0.41550…v10=−3.48434…
Δv10=∣−3.48434…−(−0.13340…)∣=3.35093…Δv10=3.35093…
해결 방법을 찾을 수 없습니다
해결책은v≈0.68232…
v≈0.68232…
다시 대체 v=u2,을 해결하다 u
u2=0.68232…해결 :u=0.68232…,u=−0.68232…
u2=0.68232…
위해서 x2=f(a) 해결책은 x=f(a),−f(a)
u=0.68232…,u=−0.68232…
해결책은
u=0.68232…,u=−0.68232…
뒤로 대체 u=cos(x)cos(x)=0.68232…,cos(x)=−0.68232…
cos(x)=0.68232…,cos(x)=−0.68232…
cos(x)=0.68232…:x=arccos(0.68232…)+2πn,x=2π−arccos(0.68232…)+2πn
cos(x)=0.68232…
트리거 역속성 적용
cos(x)=0.68232…
일반 솔루션 cos(x)=0.68232…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.68232…)+2πn,x=2π−arccos(0.68232…)+2πn
x=arccos(0.68232…)+2πn,x=2π−arccos(0.68232…)+2πn
cos(x)=−0.68232…:x=arccos(−0.68232…)+2πn,x=−arccos(−0.68232…)+2πn
cos(x)=−0.68232…
트리거 역속성 적용
cos(x)=−0.68232…
일반 솔루션 cos(x)=−0.68232…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.68232…)+2πn,x=−arccos(−0.68232…)+2πn
x=arccos(−0.68232…)+2πn,x=−arccos(−0.68232…)+2πn
모든 솔루션 결합x=arccos(0.68232…)+2πn,x=2π−arccos(0.68232…)+2πn,x=arccos(−0.68232…)+2πn,x=−arccos(−0.68232…)+2πn
해법을 원래 방정식에 연결하여 검증
솔루션을 에 연결하여 확인합니다 cos2(x)=tan(x)
방정식에 맞지 않는 것은 제거하십시오.
솔루션 확인 arccos(0.68232…)+2πn:참
arccos(0.68232…)+2πn
n=1끼우다 arccos(0.68232…)+2π1
cos2(x)=tan(x) 위한 {\ quad}끼우다{\ quad} x=arccos(0.68232…)+2π1cos2(arccos(0.68232…)+2π1)=tan(arccos(0.68232…)+2π1)
다듬다0.68232…=0.68232…
⇒참
솔루션 확인 2π−arccos(0.68232…)+2πn:거짓
2π−arccos(0.68232…)+2πn
n=1끼우다 2π−arccos(0.68232…)+2π1
cos2(x)=tan(x) 위한 {\ quad}끼우다{\ quad} x=2π−arccos(0.68232…)+2π1cos2(2π−arccos(0.68232…)+2π1)=tan(2π−arccos(0.68232…)+2π1)
다듬다0.68232…=−0.68232…
⇒거짓
솔루션 확인 arccos(−0.68232…)+2πn:거짓
arccos(−0.68232…)+2πn
n=1끼우다 arccos(−0.68232…)+2π1
cos2(x)=tan(x) 위한 {\ quad}끼우다{\ quad} x=arccos(−0.68232…)+2π1cos2(arccos(−0.68232…)+2π1)=tan(arccos(−0.68232…)+2π1)
다듬다0.68232…=−0.68232…
⇒거짓
솔루션 확인 −arccos(−0.68232…)+2πn:참
−arccos(−0.68232…)+2πn
n=1끼우다 −arccos(−0.68232…)+2π1
cos2(x)=tan(x) 위한 {\ quad}끼우다{\ quad} x=−arccos(−0.68232…)+2π1cos2(−arccos(−0.68232…)+2π1)=tan(−arccos(−0.68232…)+2π1)
다듬다0.68232…=0.68232…
⇒참
x=arccos(0.68232…)+2πn,x=−arccos(−0.68232…)+2πn
해를 10진수 형식으로 표시x=0.59876…+2πn,x=−2.54282…+2πn