解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

3tanh^2(x)=5sech(x)+1

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

3tanh2(x)=5sech(x)+1

解

x=ln(0.17157…),x=ln(5.82842…)
+1
度
x=−100.99797…∘,x=100.99797…∘
解答ステップ
3tanh2(x)=5sech(x)+1
三角関数の公式を使用して書き換える
3tanh2(x)=5sech(x)+1
双曲線の公式を使用する: tanh(x)=ex+e−xex−e−x​3(ex+e−xex−e−x​)2=5sech(x)+1
双曲線の公式を使用する: sech(x)=ex+e−x2​3(ex+e−xex−e−x​)2=5⋅ex+e−x2​+1
3(ex+e−xex−e−x​)2=5⋅ex+e−x2​+1
3(ex+e−xex−e−x​)2=5⋅ex+e−x2​+1:x=ln(0.17157…),x=ln(5.82842…)
3(ex+e−xex−e−x​)2=5⋅ex+e−x2​+1
指数の規則を適用する
3(ex+e−xex−e−x​)2=5⋅ex+e−x2​+1
指数の規則を適用する: abc=(ab)ce−x=(ex)−13(ex+(ex)−1ex−(ex)−1​)2=5⋅ex+(ex)−12​+1
3(ex+(ex)−1ex−(ex)−1​)2=5⋅ex+(ex)−12​+1
equationを以下で書き換える: ex=u3(u+(u)−1u−(u)−1​)2=5⋅u+(u)−12​+1
解く 3(u+u−1u−u−1​)2=5⋅u+u−12​+1:u≈0.17157…,u≈5.82842…
3(u+u−1u−u−1​)2=5⋅u+u−12​+1
改良(u2+1)23(u2−1)2​=u2+110u​+1
LCMで乗じる
(u2+1)23(u2−1)2​=u2+110u​+1
以下の最小公倍数を求める: (u2+1)2,u2+1:(u2+1)2
(u2+1)2,u2+1
最小公倍数 (LCM)
(u2+1)2 または以下のいずれかに現れる因数で構成された式を計算する: u2+1=(u2+1)2
以下で乗じる: LCM=(u2+1)2(u2+1)23(u2−1)2​(u2+1)2=u2+110u​(u2+1)2+1⋅(u2+1)2
簡素化
(u2+1)23(u2−1)2​(u2+1)2=u2+110u​(u2+1)2+1⋅(u2+1)2
簡素化 (u2+1)23(u2−1)2​(u2+1)2:3(u2−1)2
(u2+1)23(u2−1)2​(u2+1)2
分数を乗じる: a⋅cb​=ca⋅b​=(u2+1)23(u2−1)2(u2+1)2​
共通因数を約分する:(u2+1)2=3(u2−1)2
簡素化 u2+110u​(u2+1)2:10u(u2+1)
u2+110u​(u2+1)2
分数を乗じる: a⋅cb​=ca⋅b​=u2+110u(u2+1)2​
共通因数を約分する:u2+1=10u(u2+1)
簡素化 1⋅(u2+1)2:(u2+1)2
1⋅(u2+1)2
乗算:1⋅(u2+1)2=(u2+1)2=(u2+1)2
3(u2−1)2=10u(u2+1)+(u2+1)2
3(u2−1)2=10u(u2+1)+(u2+1)2
3(u2−1)2=10u(u2+1)+(u2+1)2
解く 3(u2−1)2=10u(u2+1)+(u2+1)2:u≈0.17157…,u≈5.82842…
3(u2−1)2=10u(u2+1)+(u2+1)2
拡張 3(u2−1)2:3u4−6u2+3
3(u2−1)2
(u2−1)2=u4−2u2+1
(u2−1)2
完全平方式を適用する: (a−b)2=a2−2ab+b2a=u2,b=1
=(u2)2−2u2⋅1+12
簡素化 (u2)2−2u2⋅1+12:u4−2u2+1
(u2)2−2u2⋅1+12
規則を適用 1a=112=1=(u2)2−2⋅1⋅u2+1
(u2)2=u4
(u2)2
指数の規則を適用する: (ab)c=abc=u2⋅2
数を乗じる:2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
数を乗じる:2⋅1=2=2u2
=u4−2u2+1
=u4−2u2+1
=3(u4−2u2+1)
括弧を分配する=3u4+3(−2u2)+3⋅1
マイナス・プラスの規則を適用する+(−a)=−a=3u4−3⋅2u2+3⋅1
簡素化 3u4−3⋅2u2+3⋅1:3u4−6u2+3
3u4−3⋅2u2+3⋅1
数を乗じる:3⋅2=6=3u4−6u2+3⋅1
数を乗じる:3⋅1=3=3u4−6u2+3
=3u4−6u2+3
拡張 10u(u2+1)+(u2+1)2:10u3+10u+u4+2u2+1
10u(u2+1)+(u2+1)2
(u2+1)2:u4+2u2+1
完全平方式を適用する: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
簡素化 (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
規則を適用 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
指数の規則を適用する: (ab)c=abc=u2⋅2
数を乗じる:2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
数を乗じる:2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=10u(u2+1)+u4+2u2+1
拡張 10u(u2+1):10u3+10u
10u(u2+1)
分配法則を適用する: a(b+c)=ab+aca=10u,b=u2,c=1=10uu2+10u⋅1
=10u2u+10⋅1⋅u
簡素化 10u2u+10⋅1⋅u:10u3+10u
10u2u+10⋅1⋅u
10u2u=10u3
10u2u
指数の規則を適用する: ab⋅ac=ab+cu2u=u2+1=10u2+1
数を足す:2+1=3=10u3
10⋅1⋅u=10u
10⋅1⋅u
数を乗じる:10⋅1=10=10u
=10u3+10u
=10u3+10u
=10u3+10u+u4+2u2+1
3u4−6u2+3=10u3+10u+u4+2u2+1
辺を交換する10u3+10u+u4+2u2+1=3u4−6u2+3
3を左側に移動します
10u3+10u+u4+2u2+1=3u4−6u2+3
両辺から3を引く10u3+10u+u4+2u2+1−3=3u4−6u2+3−3
簡素化u4+10u3+2u2+10u−2=3u4−6u2
u4+10u3+2u2+10u−2=3u4−6u2
6u2を左側に移動します
u4+10u3+2u2+10u−2=3u4−6u2
両辺に6u2を足すu4+10u3+2u2+10u−2+6u2=3u4−6u2+6u2
簡素化u4+10u3+8u2+10u−2=3u4
u4+10u3+8u2+10u−2=3u4
3u4を左側に移動します
u4+10u3+8u2+10u−2=3u4
両辺から3u4を引くu4+10u3+8u2+10u−2−3u4=3u4−3u4
簡素化−2u4+10u3+8u2+10u−2=0
−2u4+10u3+8u2+10u−2=0
ニュートン・ラプソン法を使用して −2u4+10u3+8u2+10u−2=0 の解を1つ求める:u≈0.17157…
−2u4+10u3+8u2+10u−2=0
ニュートン・ラプソン概算の定義
f(u)=−2u4+10u3+8u2+10u−2
発見する f′(u):−8u3+30u2+16u+10
dud​(−2u4+10u3+8u2+10u−2)
和/差の法則を適用: (f±g)′=f′±g′=−dud​(2u4)+dud​(10u3)+dud​(8u2)+dud​(10u)−dud​(2)
dud​(2u4)=8u3
dud​(2u4)
定数を除去: (a⋅f)′=a⋅f′=2dud​(u4)
乗の法則を適用: dxd​(xa)=a⋅xa−1=2⋅4u4−1
簡素化=8u3
dud​(10u3)=30u2
dud​(10u3)
定数を除去: (a⋅f)′=a⋅f′=10dud​(u3)
乗の法則を適用: dxd​(xa)=a⋅xa−1=10⋅3u3−1
簡素化=30u2
dud​(8u2)=16u
dud​(8u2)
定数を除去: (a⋅f)′=a⋅f′=8dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=8⋅2u2−1
簡素化=16u
dud​(10u)=10
dud​(10u)
定数を除去: (a⋅f)′=a⋅f′=10dudu​
共通の導関数を適用: dudu​=1=10⋅1
簡素化=10
dud​(2)=0
dud​(2)
定数の導関数: dxd​(a)=0=0
=−8u3+30u2+16u+10−0
簡素化=−8u3+30u2+16u+10
仮定: u0​=0Δun+1​<になるまで un+1​を計算する 0.000001
u1​=0.2:Δu1​=0.2
f(u0​)=−2⋅04+10⋅03+8⋅02+10⋅0−2=−2f′(u0​)=−8⋅03+30⋅02+16⋅0+10=10u1​=0.2
Δu1​=∣0.2−0∣=0.2Δu1​=0.2
u2​=0.17232…:Δu2​=0.02767…
f(u1​)=−2⋅0.24+10⋅0.23+8⋅0.22+10⋅0.2−2=0.3968f′(u1​)=−8⋅0.23+30⋅0.22+16⋅0.2+10=14.336u2​=0.17232…
Δu2​=∣0.17232…−0.2∣=0.02767…Δu2​=0.02767…
u3​=0.17157…:Δu3​=0.00074…
f(u2​)=−2⋅0.17232…4+10⋅0.17232…3+8⋅0.17232…2+10⋅0.17232…−2=0.01017…f′(u2​)=−8⋅0.17232…3+30⋅0.17232…2+16⋅0.17232…+10=13.60704…u3​=0.17157…
Δu3​=∣0.17157…−0.17232…∣=0.00074…Δu3​=0.00074…
u4​=0.17157…:Δu4​=5.2738E−7
f(u3​)=−2⋅0.17157…4+10⋅0.17157…3+8⋅0.17157…2+10⋅0.17157…−2=7.16598E−6f′(u3​)=−8⋅0.17157…3+30⋅0.17157…2+16⋅0.17157…+10=13.58789…u4​=0.17157…
Δu4​=∣0.17157…−0.17157…∣=5.2738E−7Δu4​=5.2738E−7
u≈0.17157…
長除法を適用する:u−0.17157…−2u4+10u3+8u2+10u−2​=−2u3+9.65685…u2+9.65685…u+11.65685…
−2u3+9.65685…u2+9.65685…u+11.65685…≈0
ニュートン・ラプソン法を使用して −2u3+9.65685…u2+9.65685…u+11.65685…=0 の解を1つ求める:u≈5.82842…
−2u3+9.65685…u2+9.65685…u+11.65685…=0
ニュートン・ラプソン概算の定義
f(u)=−2u3+9.65685…u2+9.65685…u+11.65685…
発見する f′(u):−6u2+19.31370…u+9.65685…
dud​(−2u3+9.65685…u2+9.65685…u+11.65685…)
和/差の法則を適用: (f±g)′=f′±g′=−dud​(2u3)+dud​(9.65685…u2)+dud​(9.65685…u)+dud​(11.65685…)
dud​(2u3)=6u2
dud​(2u3)
定数を除去: (a⋅f)′=a⋅f′=2dud​(u3)
乗の法則を適用: dxd​(xa)=a⋅xa−1=2⋅3u3−1
簡素化=6u2
dud​(9.65685…u2)=19.31370…u
dud​(9.65685…u2)
定数を除去: (a⋅f)′=a⋅f′=9.65685…dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=9.65685…⋅2u2−1
簡素化=19.31370…u
dud​(9.65685…u)=9.65685…
dud​(9.65685…u)
定数を除去: (a⋅f)′=a⋅f′=9.65685…dudu​
共通の導関数を適用: dudu​=1=9.65685…⋅1
簡素化=9.65685…
dud​(11.65685…)=0
dud​(11.65685…)
定数の導関数: dxd​(a)=0=0
=−6u2+19.31370…u+9.65685…+0
簡素化=−6u2+19.31370…u+9.65685…
仮定: u0​=1Δun+1​<になるまで un+1​を計算する 0.000001
u1​=−0.26120…:Δu1​=1.26120…
f(u0​)=−2⋅13+9.65685…⋅12+9.65685…⋅1+11.65685…=28.97056…f′(u0​)=−6⋅12+19.31370…⋅1+9.65685…=22.97056…u1​=−0.26120…
Δu1​=∣−0.26120…−1∣=1.26120…Δu1​=1.26120…
u2​=−2.59994…:Δu2​=2.33873…
f(u1​)=−2(−0.26120…)3+9.65685…(−0.26120…)2+9.65685…(−0.26120…)+11.65685…=9.82895…f′(u1​)=−6(−0.26120…)2+19.31370…(−0.26120…)+9.65685…=4.20267…u2​=−2.59994…
Δu2​=∣−2.59994…−(−0.26120…)∣=2.33873…Δu2​=2.33873…
u3​=−1.52768…:Δu3​=1.07225…
f(u2​)=−2(−2.59994…)3+9.65685…(−2.59994…)2+9.65685…(−2.59994…)+11.65685…=86.97662…f′(u2​)=−6(−2.59994…)2+19.31370…(−2.59994…)+9.65685…=−81.11583…u3​=−1.52768…
Δu3​=∣−1.52768…−(−2.59994…)∣=1.07225…Δu3​=1.07225…
u4​=−0.74271…:Δu4​=0.78497…
f(u3​)=−2(−1.52768…)3+9.65685…(−1.52768…)2+9.65685…(−1.52768…)+11.65685…=26.57243…f′(u3​)=−6(−1.52768…)2+19.31370…(−1.52768…)+9.65685…=−33.85150…u4​=−0.74271…
Δu4​=∣−0.74271…−(−1.52768…)∣=0.78497…Δu4​=0.78497…
u5​=0.58655…:Δu5​=1.32927…
f(u4​)=−2(−0.74271…)3+9.65685…(−0.74271…)2+9.65685…(−0.74271…)+11.65685…=10.63096…f′(u4​)=−6(−0.74271…)2+19.31370…(−0.74271…)+9.65685…=−7.99758…u5​=0.58655…
Δu5​=∣0.58655…−(−0.74271…)∣=1.32927…Δu5​=1.32927…
u6​=−0.48314…:Δu6​=1.06969…
f(u5​)=−2⋅0.58655…3+9.65685…⋅0.58655…2+9.65685…⋅0.58655…+11.65685…=20.23988…f′(u5​)=−6⋅0.58655…2+19.31370…⋅0.58655…+9.65685…=18.92109…u6​=−0.48314…
Δu6​=∣−0.48314…−0.58655…∣=1.06969…Δu6​=1.06969…
u7​=8.32623…:Δu7​=8.80938…
f(u6​)=−2(−0.48314…)3+9.65685…(−0.48314…)2+9.65685…(−0.48314…)+11.65685…=9.47094…f′(u6​)=−6(−0.48314…)2+19.31370…(−0.48314…)+9.65685…=−1.07509…u7​=8.32623…
Δu7​=∣8.32623…−(−0.48314…)∣=8.80938…Δu7​=8.80938…
u8​=6.72569…:Δu8​=1.60054…
f(u7​)=−2⋅8.32623…3+9.65685…⋅8.32623…2+9.65685…⋅8.32623…+11.65685…=−392.91766…f′(u7​)=−6⋅8.32623…2+19.31370…⋅8.32623…+9.65685…=−245.48993…u8​=6.72569…
Δu8​=∣6.72569…−8.32623…∣=1.60054…Δu8​=1.60054…
u9​=6.00490…:Δu9​=0.72078…
f(u8​)=−2⋅6.72569…3+9.65685…⋅6.72569…2+9.65685…⋅6.72569…+11.65685…=−95.03936…f′(u8​)=−6⋅6.72569…2+19.31370…⋅6.72569…+9.65685…=−131.85466…u9​=6.00490…
Δu9​=∣6.00490…−6.72569…∣=0.72078…Δu9​=0.72078…
u10​=5.83735…:Δu10​=0.16754…
f(u9​)=−2⋅6.00490…3+9.65685…⋅6.00490…2+9.65685…⋅6.00490…+11.65685…=−15.19941…f′(u9​)=−6⋅6.00490…2+19.31370…⋅6.00490…+9.65685…=−90.71934…u10​=5.83735…
Δu10​=∣5.83735…−6.00490…∣=0.16754…Δu10​=0.16754…
u11​=5.82845…:Δu11​=0.00890…
f(u10​)=−2⋅5.83735…3+9.65685…⋅5.83735…2+9.65685…⋅5.83735…+11.65685…=−0.73089…f′(u10​)=−6⋅5.83735…2+19.31370…⋅5.83735…+9.65685…=−82.05068…u11​=5.82845…
Δu11​=∣5.82845…−5.83735…∣=0.00890…Δu11​=0.00890…
u12​=5.82842…:Δu12​=0.00002…
f(u11​)=−2⋅5.82845…3+9.65685…⋅5.82845…2+9.65685…⋅5.82845…+11.65685…=−0.00201…f′(u11​)=−6⋅5.82845…2+19.31370…⋅5.82845…+9.65685…=−81.59922…u12​=5.82842…
Δu12​=∣5.82842…−5.82845…∣=0.00002…Δu12​=0.00002…
u13​=5.82842…:Δu13​=1.88507E−10
f(u12​)=−2⋅5.82842…3+9.65685…⋅5.82842…2+9.65685…⋅5.82842…+11.65685…=−1.53818E−8f′(u12​)=−6⋅5.82842…2+19.31370…⋅5.82842…+9.65685…=−81.59797…u13​=5.82842…
Δu13​=∣5.82842…−5.82842…∣=1.88507E−10Δu13​=1.88507E−10
u≈5.82842…
長除法を適用する:u−5.82842…−2u3+9.65685…u2+9.65685…u+11.65685…​=−2u2−2.00000…u−2.00000…
−2u2−2.00000…u−2.00000…≈0
ニュートン・ラプソン法を使用して −2u2−2.00000…u−2.00000…=0 の解を1つ求める:以下の解はない: u∈R
−2u2−2.00000…u−2.00000…=0
ニュートン・ラプソン概算の定義
f(u)=−2u2−2.00000…u−2.00000…
発見する f′(u):−4u−2.00000…
dud​(−2u2−2.00000…u−2.00000…)
和/差の法則を適用: (f±g)′=f′±g′=−dud​(2u2)−dud​(2.00000…u)−dud​(2.00000…)
dud​(2u2)=4u
dud​(2u2)
定数を除去: (a⋅f)′=a⋅f′=2dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=2⋅2u2−1
簡素化=4u
dud​(2.00000…u)=2.00000…
dud​(2.00000…u)
定数を除去: (a⋅f)′=a⋅f′=2.00000…dudu​
共通の導関数を適用: dudu​=1=2.00000…⋅1
簡素化=2.00000…
dud​(2.00000…)=0
dud​(2.00000…)
定数の導関数: dxd​(a)=0=0
=−4u−2.00000…−0
簡素化=−4u−2.00000…
仮定: u0​=−1Δun+1​<になるまで un+1​を計算する 0.000001
u1​=2.53131E−13:Δu1​=1
f(u0​)=−2(−1)2−2.00000…(−1)−2.00000…=−2f′(u0​)=−4(−1)−2.00000…=1.99999…u1​=2.53131E−13
Δu1​=∣2.53131E−13−(−1)∣=1Δu1​=1
u2​=−0.99999…:Δu2​=0.99999…
f(u1​)=−2⋅2.53131E−132−2.00000…⋅2.53131E−13−2.00000…=−2.00000…f′(u1​)=−4⋅2.53131E−13−2.00000…=−2.00000…u2​=−0.99999…
Δu2​=∣−0.99999…−2.53131E−13∣=0.99999…Δu2​=0.99999…
u3​=1.26743E−12:Δu3​=1.00000…
f(u2​)=−2(−0.99999…)2−2.00000…(−0.99999…)−2.00000…=−1.99999…f′(u2​)=−4(−0.99999…)−2.00000…=1.99999…u3​=1.26743E−12
Δu3​=∣1.26743E−12−(−0.99999…)∣=1.00000…Δu3​=1.00000…
u4​=−0.99999…:Δu4​=0.99999…
f(u3​)=−2⋅1.26743E−122−2.00000…⋅1.26743E−12−2.00000…=−2.00000…f′(u3​)=−4⋅1.26743E−12−2.00000…=−2.00000…u4​=−0.99999…
Δu4​=∣−0.99999…−1.26743E−12∣=0.99999…Δu4​=0.99999…
u5​=5.32463E−12:Δu5​=1.00000…
f(u4​)=−2(−0.99999…)2−2.00000…(−0.99999…)−2.00000…=−1.99999…f′(u4​)=−4(−0.99999…)−2.00000…=1.99999…u5​=5.32463E−12
Δu5​=∣5.32463E−12−(−0.99999…)∣=1.00000…Δu5​=1.00000…
u6​=−0.99999…:Δu6​=0.99999…
f(u5​)=−2⋅5.32463E−122−2.00000…⋅5.32463E−12−2.00000…=−2.00000…f′(u5​)=−4⋅5.32463E−12−2.00000…=−2.00000…u6​=−0.99999…
Δu6​=∣−0.99999…−5.32463E−12∣=0.99999…Δu6​=0.99999…
u7​=2.15534E−11:Δu7​=1.00000…
f(u6​)=−2(−0.99999…)2−2.00000…(−0.99999…)−2.00000…=−1.99999…f′(u6​)=−4(−0.99999…)−2.00000…=1.99999…u7​=2.15534E−11
Δu7​=∣2.15534E−11−(−0.99999…)∣=1.00000…Δu7​=1.00000…
u8​=−0.99999…:Δu8​=0.99999…
f(u7​)=−2⋅2.15534E−112−2.00000…⋅2.15534E−11−2.00000…=−2.00000…f′(u7​)=−4⋅2.15534E−11−2.00000…=−2.00000…u8​=−0.99999…
Δu8​=∣−0.99999…−2.15534E−11∣=0.99999…Δu8​=0.99999…
u9​=8.64686E−11:Δu9​=1.00000…
f(u8​)=−2(−0.99999…)2−2.00000…(−0.99999…)−2.00000…=−1.99999…f′(u8​)=−4(−0.99999…)−2.00000…=1.99999…u9​=8.64686E−11
Δu9​=∣8.64686E−11−(−0.99999…)∣=1.00000…Δu9​=1.00000…
解を見つけられない
解答はu≈0.17157…,u≈5.82842…
u≈0.17157…,u≈5.82842…
解を検算する
未定義の (特異) 点を求める:u=0
3(u+u−1u−u−1​)2 の分母をゼロに比較する
u=0
5u+u−12​+1 の分母をゼロに比較する
u=0
以下の点は定義されていないu=0
未定義のポイントを解に組み合わせる:
u≈0.17157…,u≈5.82842…
u≈0.17157…,u≈5.82842…
再び u=exに置き換えて以下を解く: x
解く ex=0.17157…:x=ln(0.17157…)
ex=0.17157…
指数の規則を適用する
ex=0.17157…
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(ex)=ln(0.17157…)
対数の規則を適用する: ln(ea)=aln(ex)=xx=ln(0.17157…)
x=ln(0.17157…)
解く ex=5.82842…:x=ln(5.82842…)
ex=5.82842…
指数の規則を適用する
ex=5.82842…
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(ex)=ln(5.82842…)
対数の規則を適用する: ln(ea)=aln(ex)=xx=ln(5.82842…)
x=ln(5.82842…)
x=ln(0.17157…),x=ln(5.82842…)
x=ln(0.17157…),x=ln(5.82842…)

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

tan(θ)= 5/7tan(θ)=75​(cot(x)-1)(sqrt(3)tan(x)+1)=0(cot(x)−1)(3​tan(x)+1)=0cos(2θ-pi/2)=(sqrt(2))/2cos(2θ−2π​)=22​​tan^3(x)+tan^2(x)-3tan(x)=3tan3(x)+tan2(x)−3tan(x)=3cos(x)= 7/9cos(x)=97​
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024