Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

2sin^2(x)=2-cos(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

2sin2(x)=2−cos(x)

Lösung

x=2π​+2πn,x=23π​+2πn,x=3π​+2πn,x=35π​+2πn
+1
Grad
x=90∘+360∘n,x=270∘+360∘n,x=60∘+360∘n,x=300∘+360∘n
Schritte zur Lösung
2sin2(x)=2−cos(x)
Subtrahiere 2−cos(x) von beiden Seiten2sin2(x)−2+cos(x)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
−2+cos(x)+2sin2(x)
Verwende die Pythagoreische Identität: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−2+cos(x)+2(1−cos2(x))
Vereinfache −2+cos(x)+2(1−cos2(x)):cos(x)−2cos2(x)
−2+cos(x)+2(1−cos2(x))
Multipliziere aus 2(1−cos2(x)):2−2cos2(x)
2(1−cos2(x))
Wende das Distributivgesetz an: a(b−c)=ab−aca=2,b=1,c=cos2(x)=2⋅1−2cos2(x)
Multipliziere die Zahlen: 2⋅1=2=2−2cos2(x)
=−2+cos(x)+2−2cos2(x)
Vereinfache −2+cos(x)+2−2cos2(x):cos(x)−2cos2(x)
−2+cos(x)+2−2cos2(x)
Fasse gleiche Terme zusammen=cos(x)−2cos2(x)−2+2
−2+2=0=cos(x)−2cos2(x)
=cos(x)−2cos2(x)
=cos(x)−2cos2(x)
cos(x)−2cos2(x)=0
Löse mit Substitution
cos(x)−2cos2(x)=0
Angenommen: cos(x)=uu−2u2=0
u−2u2=0:u=0,u=21​
u−2u2=0
Schreibe in der Standard Form ax2+bx+c=0−2u2+u=0
Löse mit der quadratischen Formel
−2u2+u=0
Quadratische Formel für Gliechungen:
Für a=−2,b=1,c=0u1,2​=2(−2)−1±12−4(−2)⋅0​​
u1,2​=2(−2)−1±12−4(−2)⋅0​​
12−4(−2)⋅0​=1
12−4(−2)⋅0​
Wende Regel an 1a=112=1=1−4(−2)⋅0​
Wende Regel an −(−a)=a=1+4⋅2⋅0​
Wende Regel an 0⋅a=0=1+0​
Addiere die Zahlen: 1+0=1=1​
Wende Regel an 1​=1=1
u1,2​=2(−2)−1±1​
Trenne die Lösungenu1​=2(−2)−1+1​,u2​=2(−2)−1−1​
u=2(−2)−1+1​:0
2(−2)−1+1​
Entferne die Klammern: (−a)=−a=−2⋅2−1+1​
Addiere/Subtrahiere die Zahlen: −1+1=0=−2⋅20​
Multipliziere die Zahlen: 2⋅2=4=−40​
Wende Bruchregel an: −ba​=−ba​=−40​
Wende Regel an a0​=0,a=0=−0
=0
u=2(−2)−1−1​:21​
2(−2)−1−1​
Entferne die Klammern: (−a)=−a=−2⋅2−1−1​
Subtrahiere die Zahlen: −1−1=−2=−2⋅2−2​
Multipliziere die Zahlen: 2⋅2=4=−4−2​
Wende Bruchregel an: −b−a​=ba​=42​
Streiche die gemeinsamen Faktoren: 2=21​
Die Lösungen für die quadratische Gleichung sind: u=0,u=21​
Setze in u=cos(x)eincos(x)=0,cos(x)=21​
cos(x)=0,cos(x)=21​
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Allgemeine Lösung für cos(x)=0
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=21​:x=3π​+2πn,x=35π​+2πn
cos(x)=21​
Allgemeine Lösung für cos(x)=21​
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
Kombiniere alle Lösungenx=2π​+2πn,x=23π​+2πn,x=3π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

cos(x)=0.25cos(x)=0.25-2sin(x)+sin(2x)=0−2sin(x)+sin(2x)=0sin(x+pi/4)= 1/2sin(x+4π​)=21​20sin(10x)-10=520sin(10x)−10=5sin(z)=2sin(z)=2
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024