Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Rechnen >

integral from 0 to x of sqrt(x^2+y^2)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

∫0x​x2+y2​dy

Lösung

2(2​+ln(1+2​))x2​
Schritte zur Lösung
∫0x​x2+y2​dy
Trigonometrische Substitution anwenden
=∫04π​​x2sec3(u)du
Entferne die Konstante: ∫a⋅f(x)dx=a⋅∫f(x)dx=x2⋅∫04π​​sec3(u)du
Wende integrale Reduktion an
=x2([2sec2(u)sin(u)​]04π​​+21​⋅∫04π​​sec(u)du)
∫04π​​sec(u)du=ln(1+2​)
=x2([2sec2(u)sin(u)​]04π​​+21​ln(1+2​))
Vereinfache x2([2sec2(u)sin(u)​]04π​​+21​ln(1+2​)):x2([21​sec(u)tan(u)]04π​​+21​ln(1+2​))
=x2([21​sec(u)tan(u)]04π​​+21​ln(1+2​))
Berechne die Grenzen:2​1​
=x2(2​1​+21​ln(1+2​))
Vereinfache=2(2​+ln(1+2​))x2​

Beliebte Beispiele

integral from-7 to 1 of x+3∫−71​x+3dxintegral from 1/3 to 2/3 of sqrt(4-9x^2)∫31​32​​4−9x2​dxintegral from 0 to 3 of 1/((x-1)^{3/2)}∫03​(x−1)23​1​dxintegral from 0 to 2 of x^2sqrt(1-0.5x)∫02​x21−0.5x​dxintegral from 0 to 3 of 2/(3x-2)∫03​3x−22​dx
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024